K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto AB-vecto AD

=vecto DA+vecto AB

=vecto DB

-vecto CD-veco BC

=vecto CB-vecto CD

=vecto DC+vecto CB=vecto DB

=>vecto AB+vecto CD=vecto AD-vecto BC

b: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CB}\)

\(\overrightarrow{CD}-\overrightarrow{BD}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CD}-\overrightarrow{BD}\)

=>\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)

c: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)

\(\overrightarrow{CB}-\overrightarrow{CD}=\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

1 tháng 8 2019

Hmm, bài này hình như mk làm câu đầu r nhỉ, mấy câu sau tg tự thui à :))

Vẽ hcn ABCD, theo quy tắc hbh có: \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BD}\)

\(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BD}\right|=BD\)

Có BD=AC= 2a (cạnh đối diện vs góc 300 bằng 1 nửa cạnh huyền)

\(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2a\)

Vẽ hbh ACBE=> \(\overrightarrow{BC}=\overrightarrow{EA}\)

\(\Rightarrow\overrightarrow{AC}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{EA}=\overrightarrow{EC}\)

\(\Rightarrow\left|\overrightarrow{AC}+\overrightarrow{BC}\right|=\left|\overrightarrow{EC}\right|=EC\)

DE= 2BC= 2a

=> \(DC=\sqrt{4a^2-a^2}=\sqrt{3}a\)

=> \(EC=\sqrt{ED^2+CD^2}=\sqrt{4a^2+3a^2}=\sqrt{7}a\)

\(\Rightarrow\left|\overrightarrow{AC}+\overrightarrow{BC}\right|=\sqrt{7}a\)

a: \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\right|=2\cdot AC=2\cdot5=10\)

b: \(\left|\overrightarrow{AM}+\overrightarrow{AN}\right|=\left|\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{2}+\dfrac{\overrightarrow{AD}+\overrightarrow{AC}}{2}\right|\)

\(=\left|\dfrac{3\cdot\overrightarrow{AC}}{2}\right|=\dfrac{3}{2}AC=\dfrac{3}{2}\cdot5=\dfrac{15}{2}=7.5\)

NM
4 tháng 12 2020

A B C D

ta có \(\overrightarrow{BC}\cdot\left(2\overrightarrow{\cdot AD}-\overrightarrow{AB}\right)=2\cdot\overrightarrow{BC}\cdot\overrightarrow{AD}-\overrightarrow{BC}\cdot\overrightarrow{AB}=2a^2\)

(Do BC và AD cùng hướng, BC và AB vuông góc với nhau)

3 tháng 9 2020

\(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\Leftrightarrow2\overrightarrow{AC}-\overrightarrow{AB}=3\overrightarrow{AH}\)

 Gọi I là trung điểm AC

Ta có : \(BG=GH=2GI\Rightarrow GI=IH\)

Tứ giác \(AGCH\)có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành 

\(\Rightarrow AH=GC\)

\(2\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{BC}\)

\(=\overrightarrow{AH}+\overrightarrow{HC}+\overrightarrow{BH}+\overrightarrow{HC}=\overrightarrow{AH}+2\overrightarrow{GH}+2\overrightarrow{HC}\)

\(=\overrightarrow{AH}+2\overrightarrow{GH}+2\left(\overrightarrow{HG}+\overrightarrow{GC}\right)=\overrightarrow{AH}+2\overrightarrow{GC}=\overrightarrow{AH}+2\overrightarrow{AH}=3\overrightarrow{AH}\)

A B C H G I

3 tháng 9 2020

Mình xin cảm ơn ạ

NV
17 tháng 7 2021

Không đúng, vì \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) không bằng nhau

Hai vecto bằng nhau cần thỏa mãn đồng thời 3 điều kiện: có độ dài bằng nhau, cùng phương, cùng chiều.

2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{BC}\) chỉ thỏa mãn 1 trong 3 điều kiện (bằng độ dài) nên ko bằng nhau

6 tháng 8 2018

b) Dựng hình bình hành ABCD

Tam giác ABC đều:

Kẻ BH⊥AC ⇒BD⊥AC

Tam giác HAB vuông tại H:

BH=AB.sinA=a.sin60=\(\dfrac{a\sqrt{3}}{2}\)

BD=2AH=\(2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

Vecto v=vectoBA+vectoBC=vectoBD

|vecto v|=|vectoBD|=BD=\(a\sqrt{3}\)

7 tháng 8 2018

§2. Tổng và hiệu của hai vectơ

\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)

\(\overrightarrow{AD}-\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)

Do đó: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AD}-\overrightarrow{CD}\)

=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}-\overrightarrow{BC}\)