K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề; AE,CF vuông góc với BD

a: Xét ΔADE vuông tại E và ΔCBF vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

b: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

c: Xét tứ giác AKCI có

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

Suy ra: AK=CI

d: Ta có: AKCI là hình bình hành

nên Hai đường chéo AC và KI cắt nhau tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,IK,BD đồng quy

8 tháng 12 2016

AE = CF (gt)

mà AE // CF (ABCD là hình chữ nhật)

=> AECF là hình bình hành

=> FA // CE

=> AFD = ECF (2 góc đồng vị)

mà ECF = CEB (2 góc so le trong, AB // CD)

=> AFD = CEB (1)

AB = CD (ABCD là hình chữ nhật)

mà AE = CF (gt)

=> AB - AE = CD - CF

=> EB = DF (2)

Xét tam giác NEB và tam giác MFD có:

NEB = MFD (theo 1)

EB = FD (theo 2)

EBN = FDM (2 góc so le trong, AB // CD)

=> Tam giác NEB = Tam giác MFD (g.c.g)

=> BN = DM (2 cạnh tương ứng)

O là trung điểm của BD (3)

=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)

=> O là trung điểm của EF (AECF là hình bình hành) (5)

AEI = ABD (2 góc so le trong, EI // BD)

CFK = CDB (2 góc so le trong, FK // BD)

mà ABD = CBD (2 góc so le trong, AB // CD)

=> AEI = CFK (6)

EI // BD (gt)

FK // DB (gt)

=> EI // FK (7)

Xét tam giác EAI và tam giác FCK có:

IEA = KFC (theo 6)

EA = FC (gt)

EAI = FCK (= 900)

=> Tam giác EAI = Tam giác FCK (g.c.g)

=> EI = FK (2 cạnh tương ứng)

mà EI // FK (theo 7)

=> EIFK là hình bình hành

mà O là trung điểm của EF (theo 5)

=> O là trung điểm của IK (8)

Từ (3), (4), (5) và (8)

=> AC, EF, IK đồng quy tại O là trung điểm của BD

O là trung điểm của AC và BD

=> OA = OC = \(\frac{AC}{2}\)

OB = OD = \(\frac{BD}{2}\)

mà AC = BD (ABCD là hình chữ nhật)

=> OA = OD = OB = OC

=> Tam giác OAD cân tại O

mà AOD = 600

=> Tam giác OAD đều

=> AD = OA = OD

mà AD = 1 cm

AD = BC (ABCD là hình chữ nhật)

=> OA = OD = OC = OB = BC = 1 cm

=> AC = 2OA = 2 . 1 = 2 cm

Xét tam giác BAC vuông tại B có:

\(AC^2=BA^2+BC^2\) (định lý Pytago)

\(AB^2=AC^2-BC^2\)

\(=2^2-1^2\)

\(=4-1\)

= 3

\(AB=\sqrt{3}\)

\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)

8 tháng 12 2016

@@ my god oaoa

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔAEM có 

E là trung điểm của AB

EN//AM

Do đó; N là trung điểm của BM

=>BN=NM(1)

Xét ΔDNC có 

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

=>DM=MN(2)

Từ (1) và (2) suy ra DM=MN=NB

c: Xét ΔADM và ΔCBN có

AD=CB

\(\widehat{ADM}=\widehat{CBN}\)

DM=BN

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

mà EN=AM/2

và MF=CN/2

nên EN=MF

Xét tứ giác MENF có

NE//MF

NE=MF

Do đó: MENF là hình bình hành

8 tháng 12 2014

Bạn tự vẽ hình nha ^^

a) Ta có: AB=CD (gt), mà E,F lần lượt và trung điểm của AB và CD.

=> EA=EB=FD=FC

Ta có: AB song song => EA song song FC

Ta có EA=FC và EA song song FC

=> AECF là hình bình hành.

Tương tự chứng minh BEDF là hình bình hành.

b) Kẻ EF.

Ta có: EA=FD (cmt); AB song song CD => EA song song FD

=> AEFD là hình bình hành

Tương tự chứng minh EBCF là hình hình hành.

Ta có: E là trung điểm AB

          K là trung điểm của BF (hai đường chéo EC và BF của hình bình hành cắt nhau tại trung điểm mỗi đường)

=> KE là đường trung bình của tam giác ABF

=> KE song song AF và KE=1/2 AF (1)

Ta có hai đường chéo AF và DE của hình bình hành AEFD => I là trung điểm của AF => IF=1/2 AF (2)

Từ (1) và (2) suy ra IF=KE và KE song song AF

=> EIFK là hình bình hành

c)  Xét hình bình hành ABCD có AC và BD là hai đường chéo => AC và BD cắt nhau tại trung điểm mỗi đường (1)

Xét hình bình hành AEFC có hai đường chéo là EF và AC => EF và AC cắt nhau tại trung điểm mỗi đường (2)

Từ (1) và (2) suy ra AC, BD, EF cùng đi qua một diểm.

d) Giả sử EIFK là hình vuông.

=> IF = IE

Mà IF=IA, IE=ID (hai đường chéo AF và DE cắt nhau tại trung điểm mỗi đường)

=> IE=ID=IA=IF

=> AF=DE

Hình bình hành AEFD có hai đường chéo bằng nhau => là hình chữ nhật.

=> DAE= 90 độ

Ta có hình bình hành ABCD có một góc vuông => là hình chữ nhật.

Vậy để EIFK là hình vuông thì ABCD phải là hình chữ nhật.

e) Gọi giao điểm của AC và DB là O

Ta có DO là đường trung tuyến xuất phát từ đỉnh D của tam giác DAC

AF là đường trung tuyến xuất phát từ đỉnh A của tam giác DAC

DO và AF cắt nhau tại M

=> M là trọng tâm của tam giác DAC

=> DM=2/3 DO, MO=1/3 DO (1)

Tương tự chứng minh NB=2/3 BO và NO=1/3 BO (2)

Ta có OB=OD (3)

Từ (1), (2) và (3) suy ra DM=NB

Ta có MN=MO+NO=1/3 DO+ 1/3 BO= 2/3 DO = 2/3 BO 

=> DM=MN=NB