K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2021

giúp mình với mình đag cần gấp

 

 

11 tháng 5 2020

a.
vì ABCD là hình bình hành
suy ra AB//CD, AD//BC
vì AB//DK, theo Tales, ta có
BM/MD = MA/MK
vì AD//BN, theo Tales, ta có
MN/MA = BM/DM
b.
từ BM/MD = MA/MK
và BM/MD = MN/MA
suy ra MA/MK = MN/MA
hay MA^2 = MN.MK

5 tháng 3 2022

a. -Xét △AID: AD//BJ (ABCD là hình bình hành).

\(\Rightarrow\dfrac{IA}{IJ}=\dfrac{ID}{IB}\) (định lí Ta-let). (1)

-Xét △AIB: AB//DK (ABCD là hình bình hành).

\(\Rightarrow\dfrac{IK}{IA}=\dfrac{ID}{IB}\) (định lí Ta-let). (2)

-Từ (1), (2) suy ra: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) nên \(IA^2=IK.IJ\).

b. -Có: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) (cmt)

\(\Rightarrow\dfrac{IA+IJ}{IJ}=\dfrac{IK+IA}{IA}\)

\(\Rightarrow\dfrac{AJ}{IJ}=\dfrac{AK}{IA}\)

\(\Rightarrow\dfrac{AK}{IA}=\dfrac{AJ+AK}{IJ+IA}=\dfrac{AJ+AK}{AJ}\)

\(\Rightarrow\dfrac{1}{IA}=\dfrac{AJ+AK}{AJ.AK}\)

\(\Rightarrow\dfrac{1}{IA}=\dfrac{1}{AK}+\dfrac{1}{AJ}\)

 

5 tháng 3 2022

mik cảm ơn 

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có

AE//CF
AE=CF

DO đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

BF=DE

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

=>AK=CI

Xét tứ giác AKCI có 

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

Suy ra: AI//CK

c: BF=DE

=>BF+EF=DE+EF

=>BE=DF