K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

Lời giải:

PT hoành độ giao điểm:

\(x^2+4x-3-(-mx-3)=0\)

\(\Leftrightarrow x^2+x(4+m)=0\)

\(\Leftrightarrow x(x+4+m)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x=-(m+4)\end{matrix}\right.\)

Để 2 đths cắt nhau tại hai điểm pb thì \(-(m+4)\neq 0\leftrightarrow m\neq -4\)

Khi đó 2 điểm A,B là: \(A(0; -3); B(-m-4, m^2+4m-3)\)

Để trung điểm $I$ của $AB$ nằm trên trục $Ox$ thì \(y_I=0\)

\(\Leftrightarrow \frac{y_A+y_B}{2}=0\)

\(\Leftrightarrow \frac{-3+m^2+4m-3}{2}=0\)

\(\Leftrightarrow m^2+4m-6=0\Rightarrow m=-2\pm \sqrt{10}\)

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

17 tháng 12 2020

Đường thẳng (d) có dạng \(y=kx+m\)

\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)

\(\Rightarrow y=kx+2\left(d\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)

Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)

\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)

Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)

\(x-2y+3=0\left(d'\right)\)

\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)

\(\Leftrightarrow2k^2-9k+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)

P/s: Không biết đúng kh.

NV
19 tháng 11 2019

a/ Bạn tự giải

b/ Phương trình hoành độ giao điểm:

\(-x^2-3x+4=mx+5\)

\(\Leftrightarrow x^2+\left(m+3\right)x+1=0\)

Để (d) cắt (P) tại 2 điểm pb

\(\Rightarrow\Delta=\left(m+3\right)^2-4=m^2+6m+5>0\Rightarrow\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_A+x_B=-m-3\\x_Ax_B=1\end{matrix}\right.\)

\(AB^2=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2\)

\(=\left(x_A+x_B\right)^2-4x_Ax_B+m^2\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)

\(=\left(m^2+1\right)\left[\left(m+3\right)^2-4\right]\)

\(=\left(m^2+1\right)\left(m^2+6m+5\right)\)

\(\Rightarrow\left(m^2+1\right)\left(m^2+6m+5\right)=4\)

\(\Leftrightarrow m^4+6m^3+6m^2+6m+1=0\)

Nhận thấy \(m=0\) không phải nghiệm, pt tương đương:

\(m^2+\frac{1}{m^2}+6\left(m+\frac{1}{m}\right)+6=0\)

Đặt \(m+\frac{1}{m}=a\Rightarrow m^2+\frac{1}{m^2}=a^2-2\)

\(a^2-2+6a+6=0\Leftrightarrow a^2+6a+4=0\Rightarrow\left[{}\begin{matrix}a=-3+\sqrt{5}\\a=-3-\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m+\frac{1}{m}=-3+\sqrt{5}\\m+\frac{1}{m}=-3-\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+\left(3-\sqrt{5}\right)m+1=0\\m^2+\left(3+\sqrt{5}\right)m+1=0\end{matrix}\right.\)

Bạn tự giải nốt pt bậc 2 trên

Ko biết có nhầm lẫn gì mà kết quả xấu kinh dị vậy ta @@

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

13 tháng 4 2019

Phương trình hoành độ giao điểm:  - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1

Dễ thấy (1) luôn có 2 nghiệm phân biệt vì  a c = 1 . - 3 = - 3 < 0

Khi đó (d) cắt (P) tại hai điểm phân biệt  A x 1 ; m x 1 B x 2 ; m x 2 , với  x 1 ,   x 2  là nghiệm phương trình (1). Theo Viét, có:  x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3

I là trung điểm

A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2

I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0

⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3

Đáp án cần chọn là: D

Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0

hay m<>1

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)

\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)

\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)

\(=4m^2-32m+64-4m^2+24m-20\)

\(=-8m+44\)

Để phương trình có hai nghiệm phân biệt thì -8m+44>0

=>-8m>-44

hay m<11/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)

\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)

\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow4m^2-8m+4-8m-44=0\)

\(\Leftrightarrow4m^2-16m-40=0\)

\(\Leftrightarrow m^2-4m-10=0\)

\(\Leftrightarrow\left(m-2\right)^2=14\)

hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?