Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
Đường thẳng (d) có dạng \(y=kx+m\)
\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)
\(\Rightarrow y=kx+2\left(d\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)
Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)
\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)
\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)
\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)
Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)
\(x-2y+3=0\left(d'\right)\)
\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)
\(\Leftrightarrow2k^2-9k+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)
P/s: Không biết đúng kh.
a/ Bạn tự giải
b/ Phương trình hoành độ giao điểm:
\(-x^2-3x+4=mx+5\)
\(\Leftrightarrow x^2+\left(m+3\right)x+1=0\)
Để (d) cắt (P) tại 2 điểm pb
\(\Rightarrow\Delta=\left(m+3\right)^2-4=m^2+6m+5>0\Rightarrow\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_A+x_B=-m-3\\x_Ax_B=1\end{matrix}\right.\)
\(AB^2=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2\)
\(=\left(x_A+x_B\right)^2-4x_Ax_B+m^2\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)
\(=\left(m^2+1\right)\left[\left(m+3\right)^2-4\right]\)
\(=\left(m^2+1\right)\left(m^2+6m+5\right)\)
\(\Rightarrow\left(m^2+1\right)\left(m^2+6m+5\right)=4\)
\(\Leftrightarrow m^4+6m^3+6m^2+6m+1=0\)
Nhận thấy \(m=0\) không phải nghiệm, pt tương đương:
\(m^2+\frac{1}{m^2}+6\left(m+\frac{1}{m}\right)+6=0\)
Đặt \(m+\frac{1}{m}=a\Rightarrow m^2+\frac{1}{m^2}=a^2-2\)
\(a^2-2+6a+6=0\Leftrightarrow a^2+6a+4=0\Rightarrow\left[{}\begin{matrix}a=-3+\sqrt{5}\\a=-3-\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m+\frac{1}{m}=-3+\sqrt{5}\\m+\frac{1}{m}=-3-\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2+\left(3-\sqrt{5}\right)m+1=0\\m^2+\left(3+\sqrt{5}\right)m+1=0\end{matrix}\right.\)
Bạn tự giải nốt pt bậc 2 trên
Ko biết có nhầm lẫn gì mà kết quả xấu kinh dị vậy ta @@
Phương trình hoành độ giao điểm:
\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)
Pt đã cho luôn có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\)
Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)
Mà I thuộc d'
\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)
\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
\(\Rightarrow\sum m^2=4\)
Phương trình hoành độ giao điểm: - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1
Dễ thấy (1) luôn có 2 nghiệm phân biệt vì a c = 1 . - 3 = - 3 < 0
Khi đó (d) cắt (P) tại hai điểm phân biệt A x 1 ; m x 1 , B x 2 ; m x 2 , với x 1 , x 2 là nghiệm phương trình (1). Theo Viét, có: x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3
I là trung điểm
A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2
Mà I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0
⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3
Đáp án cần chọn là: D
Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0
hay m<>1
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)
\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)
\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)
\(=4m^2-32m+64-4m^2+24m-20\)
\(=-8m+44\)
Để phương trình có hai nghiệm phân biệt thì -8m+44>0
=>-8m>-44
hay m<11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)
\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)
\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow4m^2-8m+4-8m-44=0\)
\(\Leftrightarrow4m^2-16m-40=0\)
\(\Leftrightarrow m^2-4m-10=0\)
\(\Leftrightarrow\left(m-2\right)^2=14\)
hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)
c: Điểm M,N ở đâu vậy bạn?
Lời giải:
PT hoành độ giao điểm:
\(x^2+4x-3-(-mx-3)=0\)
\(\Leftrightarrow x^2+x(4+m)=0\)
\(\Leftrightarrow x(x+4+m)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x=-(m+4)\end{matrix}\right.\)
Để 2 đths cắt nhau tại hai điểm pb thì \(-(m+4)\neq 0\leftrightarrow m\neq -4\)
Khi đó 2 điểm A,B là: \(A(0; -3); B(-m-4, m^2+4m-3)\)
Để trung điểm $I$ của $AB$ nằm trên trục $Ox$ thì \(y_I=0\)
\(\Leftrightarrow \frac{y_A+y_B}{2}=0\)
\(\Leftrightarrow \frac{-3+m^2+4m-3}{2}=0\)
\(\Leftrightarrow m^2+4m-6=0\Rightarrow m=-2\pm \sqrt{10}\)