Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a> gọi y=(m-2)x+n là (d)
để (d) là hsbn thì m khác 2, với mọi n thuộc R
b> hàm số đồng biến khi m>2
nghịch biến khi m<2
c> điều kiện để (d) // (d'): y=2x-1 <=> m-2=2 <=>m=4
và n khác -1
vậy để (d) // (d') <=> m=4, m khác 2, n khác -1
d> điều kiện để (d) cắt (d''): y=-3x+2 <=> m-2=-3 <=> m khác -1
vậy để (d) cắt (d'') <=> m khác 2, m khác -1
e> để (d) trùng (d'''): y=3x-2 <=> m-2=3 <=> m=5
và n = -2
vậy để d//d''' <=> m khác 2, m=5, n=-2
f> vì d đi qua A(1;2) => 2=m-2+n <=> m+n=4 (1). vì d đi qua B(3;4) => 4=3m-6+n <=> 3m+n = 10 (2)
lấy (2) trừ (1) <=> 2m=6 <=> m= 3 => n=1
câu a hs bậc nhất vì m-1 khác 0 m khác1
câu b hs đồng biến vì m-1 >0 m>1
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
Lời giải:
a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$
Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$
b. Để đths đi qua điểm $A(-1;1)$ thì:
$y_A=(m-1)x_A+m$
$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$
$\Leftrightarrow 1=1$ (luôn đúng)
Vậy đths luôn đi qua điểm A với mọi $m$
c.
$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$
Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:
\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)
d,
ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$
$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$
$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$