Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đồ thị hàm số tạo với 2 trục 1 tam giác \(\Rightarrow m\ne\left\{1;2\right\}\)
Gọi A và B lần lượt là giao điểm của ĐTHS với Ox và Oy
\(\Rightarrow A\left(-\dfrac{m-2}{m-1};0\right)\) ; \(B\left(0;m-2\right)\)
\(\Rightarrow OA=\left|-\dfrac{m-2}{m-1}\right|=\left|\dfrac{m-2}{m-1}\right|\) ; \(OB=\left|m-2\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Rightarrow OA.OB=4\)
\(\Leftrightarrow\left|\dfrac{m-2}{m-1}\right|.\left|m-2\right|=4\Leftrightarrow\left(m-2\right)^2=4\left|m-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2-4m+4=4\left(m-1\right)\\m^2-4m+4=-4\left(m-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2-8m+8=0\\m^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=4\pm2\sqrt{2}\\m=0\end{matrix}\right.\)
A học đại học rồi mà vẫn hỏi câu lp 9 ak
cho x=0=>y=m+3=>A(0;m+3)
cho y=0=>\(x=\dfrac{-m-3}{m-2}\)\(=>B\left(\dfrac{-m-3}{m-2};0\right)\)
vậy đồ thị hàm số trên là đường thẳng đi qua A(0,m+3) và B\(\left(\dfrac{-m-3}{m-2};0\right)\)
\(=>S\left(\Delta OAB\right)=1=\dfrac{OA.OB}{2}=\dfrac{\left(m+3\right)\left(\dfrac{-m-3}{m-2}\right)}{2}\)
\(=>m=..............\)(bạn tự tính)
a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2)
(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2
<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3
Vậy (d) : y = -2x - 2
b, bạn tự vẽ nhé
c, Cho x = 0 => y = -2
=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2
Cho y = 0 => x = -1
=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt )
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1 <=> \hept{m=−3m≠92\hept{m=−3m≠92 <=> m=−3
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10
<=> mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0
<=> m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0
Để M cố định thì: \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0 <=> \hept{x0=−2y0=−20\hept{x0=−2y0=−20
Vậy...
\(a,m=1\Leftrightarrow y=\left(2-3\right)x+1-5=-x-4\)
\(b,\) Gọi điểm cố định mà hs luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-3\right)x_0+m-5\\ \Leftrightarrow2mx_0-3x_0+m-5-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(3x_0+y_0+5\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\3x_0+y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-5+\dfrac{3}{2}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow A\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)\)
Vậy đths luôn đi qua \(A\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)\) với mọi m
a) y=(m-1)x+m+3 (d1) (a=m-1;b=m+3)
y=-2x+1 (d2) (a' =-2;b' =1)
vì hàm số (d1) song song với hàm số (d2) nên
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)
vậy với m= -1 thì hàm số (d1) song song với hàm số (d2)
b) vì hàm số (d1) đi qua điểm (1;-4) nên
x=1 ; y= -4
thay vào (d1) ta có
-4=m-1+m+3 (mình làm tắt ko nhân với 1 nha)
-4=2m+2
-2=2m
m=-1
\(a,\) Đồng biến \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Nghịch biến \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(b,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-\left(m+3\right)\Leftrightarrow x=\dfrac{m+3}{2-m}\Leftrightarrow A\left(\dfrac{m+3}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+3}{2-m}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=m+3\Leftrightarrow B\left(0;m+3\right)\Leftrightarrow OB=\left|m+3\right|\)
Theo đề: \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=1\)
\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|\left|m+3\right|=2\\ \Leftrightarrow\dfrac{\left(m+3\right)^2}{\left|2-m\right|}=2\\ \Leftrightarrow2\left|2-m\right|=\left(m+3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2\left(2-m\right)=\left(m+3\right)^2\left(m\le2\right)\\2\left(m-2\right)=\left(m+3\right)^2\left(m>2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+8m+5=0\left(m\le2\right)\\m^2+4m+13=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=-4+\sqrt{11}\left(n\right)\\m=-4-\sqrt{11}\left(n\right)\end{matrix}\right.\)
Vậy ...
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)