K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2023

\(g’\left( x \right) = \left( {3{x^2} + 1} \right)f’\left( {{x^3} + x – 1} \right)\)

Xét \(g’\left( x \right) = 0 \Leftrightarrow f’\left( {{x^3} + x – 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^3} + x – 1 =  – 1\\{x^3} + x – 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} + x = 0\\{x^3} + x – 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

\(\begin{array}{l}g\left( 0 \right) = f\left( { – 1} \right) + m = 3 + m\\g\left( 1 \right) = f\left( 1 \right) + m =  – 1 + m\end{array}\)

\(\begin{array}{l} \Rightarrow \mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right)\\ \Rightarrow 3 + m =  – 10\\ \Leftrightarrow m =  – 13\end{array}\)

27 tháng 7 2018

Đáp án D

29 tháng 8 2019

Đáp án B

Ta có

Q2HiSarQSBbg.png.

ssrIF8w1PZCL.png.

Hình bên dưới là đồ thị của hàm số 5VA885pMMAuw.pngcbVgDqhC8h3X.png.

QdcvKN8Celrc.png

Dựa vào hình vẽ ta thấy đồ thị hàm số QVc8JOSajCZr.pngH9SvkqUmSDZb.png cắt nhau tại 2 điểm phân biệt, đồng thời LbS7RNGMUIhx.png khi fZfzgMR1sxOw.png hoặc 2C9BB48fNI0N.png, gBzZLZA1FzVf.png khi NFC74aKZnjk6.png.

Do đó 1lS9a1XDNNqY.png đổi dấu qua kfi658QYvx6r.png, KsJWf9LMmDsV.png.

Vậy hàm số g(x) có hai điểm cực trị.

30 tháng 11 2019

Chọn A

11 tháng 4 2019

Chọn D 

Trong khoảng j7WpVTfwyZo5.png đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x)  đồng biến trên khoảng ( 0; π)

17 tháng 12 2019

Chọn B

Ta có g’(x) = f’(x) + 1.

 Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song  với Oy lên trên 1 đơn vị.

Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.

=> Hàm số y= g(x) có 2 điểm cực trị.

28 tháng 3 2017

22 tháng 8 2018





9 tháng 11 2017

9 tháng 2 2019

Ta có 

Suy ra đồ thị của hàm số g’ (x)  là phép tịnh tiến đồ thị hàm số y= f’ (x)  theo phương Oy xuống dưới đơn vị.

Ta có và dựa vào đồ thị của hàm số y= f’ (x),  ta suy ra đồ thị của hàm số g’ (x)  cắt trục hoành tại 4 điểm.

Chọn D.