K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Đường thẳng y = ( m -3 ).x + 5 đi qua A(-5;1)

=> A(-5;1) thuộc hàm số y = ( m - 3 ).x + 5

                                        1 = ( m - 3).(-5) + 5

                                        1 = -5m + 15 + 5

                                        1 = -5m + 20

                                        -5m = -19

                                            m = 19/5

Vậy m = 19/5 thì y = ( m - 3)x + 5 đi qua A(-5;1)

21 tháng 10 2021

ceggcvg

23 tháng 11 2018

a) Hàm số đồng biến khi m - 2 > 0

                                    <=> m > 2

   Hàm số nghịch biến khi m - 2 < 0

                                  <=> m < 2

23 tháng 11 2018

b) Vì A(1;-2) thuộc đồ thị

=> -2 = 1 ( m - 2 ) + 3

<=> -2 = m - 2 + 3

<=> m = 1

Vậy m = 1

28 tháng 9 2017

a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2 

Thay vào hàm số, ta có: 2 = 2.2 + m - 1     <=>   2 = 3 + m     <=> m= -1

=>   hàm số: y = 2x - 2

đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.

b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1   <=> m = 2

2 tháng 12 2017

a, Hàm số y = 2x + m - 1 đi qua điểm A(2;2) nên suy ra x = 2; y =2
Thay vào hàm số, ta có: 2 = 2.2 + m - 1 <=> 2 = 3 + m <=> m= -1
=> hàm số: y = 2x - 2
đồ thị: xác định 2 điểm ( 0 ; -2 ) và ( 1; 0). vẽ đường thẳng đi qua 2 điểm này được đồ thị hàm số cần vẽ.
b, Vì đồ thị của hàm số y = 2x + m-1 cắt đồ thị hàm số y = x+1 tại một điểm nằm trên trục hoành nên m-1 = 1 <=> m = 2

chúc bn hok tốt @_@

24 tháng 12 2021

\(a,\Leftrightarrow a\cdot1^2=2\Leftrightarrow a=2\\ b,\left(P\right):y=2x^2\\ \text{Thay }x=-1;y=2\Leftrightarrow2\left(-1\right)^2=2\left(đúng\right)\\ \Leftrightarrow B\in\left(P\right)\\ c,\text{PT hoành độ giao điểm: }2x^2=-x+2\Leftrightarrow2x^2+x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{17}}{4}\Leftrightarrow y=\dfrac{9-\sqrt{17}}{4}\rightarrow A\left(\dfrac{-1+\sqrt{17}}{4};\dfrac{9-\sqrt{17}}{4}\right)\\x=\dfrac{-1-\sqrt{17}}{4}\Leftrightarrow y=\dfrac{9+\sqrt{17}}{4}\rightarrow B\left(\dfrac{-1-\sqrt{17}}{4};\dfrac{9+\sqrt{17}}{4}\right)\end{matrix}\right.\)