Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)
=>\(m+1=-\dfrac{1}{2}\)
=>\(m=-\dfrac{3}{2}\)
b: Thay x=2 vào y=x+3, ta được:
\(y=2+3=5\)
Thay x=2 và y=5 vào (d), ta được:
\(2\left(m+1\right)-5=5\)
=>2(m+1)=10
=>m+1=5
=>m=5-1=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)
=>A(0;-5)
\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)
Tọa độ B là:
\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)
=>\(B\left(\dfrac{5}{m+1};0\right)\)
\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)
Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)
Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)
=>\(2\left|m+1\right|=5\)
=>|m+1|=5/2
=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)
Sửa đề: (d'): y=-4x+3
a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:
\(0\left(m+2\right)+m=0\)
=>m=0
b:
Sửa đề: Để đường thẳng (d)//(d')
Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)
=>m=-6
c: Sửa đề: cắt đường thẳng d'
Để (d) cắt (d') thì \(m+2\ne-4\)
=>\(m\ne-6\)
d: Để (d) trùng với (d') thì
\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)
=>\(m\in\varnothing\)
a, Với \(m\ne2\)
d đi qua A(0;5) <=> \(m=5\)(tm)
b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><
d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)
b, xét pt hoành độ giao điểm:
-x²=4x+m
=> x²+4x+m=0
a=1. b= 4. c=m
Để pt có 2 No pb=> ∆>0
<=>4²-4×1×m>0
<=>16-4m>0
<=> -4m>-16
<=> m<16÷4=4
Vậy m=4 pt có 2No pb
?4:
Xét ΔADC có
E là trung điểm của AD
EI//DC
Do đó:I là trung điểm của AC
Xét ΔCAB có
I là trung điểm của CA
IF//AB
Do đó: F là trug điểm của BC
?2:
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>góc ADE=góc ABC
Lời giải:
** Sửa lại hàm số: $y=-x+3$
a. Bạn có thể tự vẽ.
b. Để $y=(2k-1)x+1$ song song với (d)$ thì:
$2k-1=-1$
$\Leftrightarrow k=0$
c. PT hoành độ giao điểm của $(d)$ và $y=(k-3)x+5$:
$-x+3=(k-3)x+5$
$\Leftrightarrow (k-2)x=-2$
$\Leftrightarrow x=\frac{-2}{k-2}$ (đk: $k\neq 2$)
Khi đó: $y=-x+3=\frac{2}{k-2}+3$
Hai đths cắt nhau tại điểm có tung độ $7$
$\Leftrightarrow \frac{2}{k-2}+3=7$
$\Leftrightarrow \frac{2}{k-2}=4$
$\Leftrightarrow k-2=\frac{1}{2}\Leftrightarrow k=2,5$
a: Sửa đề: y=-x+3
Vẽ đồ thị
b: Để đường thẳng y=(2k-1)x+1 song song với (d) thì
\(\left\{{}\begin{matrix}2k-1=-1\\1\ne3\left(đúng\right)\end{matrix}\right.\)
=>2k-1=-1
=>2k=0
=>k=0
c: Thay y=7 vào y=-x+3, ta được:
-x+3=7
=>-x=4
=>x=-2
Thay x=-2 và y=7 vào y=(k-3)x+5, ta được:
-2(k-3)+5=7
=>-2(k-3)=2
=>k-3=-1
=>k=2