Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tập xác định: D = R
- Đạo hàm: y ’ = 3 x 2 – 6 x
- Do tiếp tuyến Δ song song với đường thẳng (d): y = 9x + 10 nên hệ số góc của tiếp tuyến là:
- Ứng với 2 giá trị x 0 ta viết được hai phương trình tiếp tuyến thỏa mãn bài.
Chọn C.
Chọn D.
Ta có: y’ = -3x2 + 6x. Lấy điểm M(xo; yo) ∈ (C).
Tiếp tuyến tại Msong song với đường thẳng y = -9x suy ra y’(xo) = -9
Với xo = -1 ⇒ yo = 2 ta có phương trình tiếp tuyến: y = -9x - 7
Với xo = 3 ⇒ yo = -2 ta có phương trình tiếp tuyến: y = -9x + 25
Vậy có 2 tiếp tuyến thỏa mãn.
Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$
$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$
Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$
Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.
\(\left(m^2-3m-5\right)x-y-2m+19=0\)
\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)
Ta có:
\(f'\left(x\right)=-3x^2+4x-1\)
\(f'\left(2\right)=-5\)
Phương trình tiếp tuyến tại A:
\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)
Để hai đường thẳng song song:
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
- Tập xác định: D = R.
- Đạo hàm: y ' = 3 x 2 - 6 x .
- Đường thẳng d: y = 9x + 100 có hệ số góc k = 9.
- Vì tiếp tuyến song song với đường thẳng d nên k t t = 9 .
- Ta có:
- Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán.
Chọn C