K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) =  - \sin x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \sin x\) là hàm số lẻ.

b)

     \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

    \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

            \(\sin x\)

            \(0\)

    \( - \frac{{\sqrt 2 }}{2}\)

            \( - 1\)

    \( - \frac{{\sqrt 2 }}{2}\)

0

\(\frac{{\sqrt 2 }}{2}\)

1

\(\frac{{\sqrt 2 }}{2}\)

0

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \sin x\) có tập xác định là \(\mathbb{R}\), tập giá trị là [-1;1] và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right),\;k\; \in \;\mathbb{Z}.\)

Cho hàm số \(y = \cos x\)a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị của hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\cos x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\cos x\) với những x âm.            \(x\)            \( - \pi \)            \( - \frac{{3\pi...
Đọc tiếp

Cho hàm số \(y = \cos x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\cos x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\cos x\) với những âm.

            \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

\(\cos x\)

?

?

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = 2\pi \), ta được đồ thị của hàm số \(y = \cos x\) như hình dưới đây.

Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số \(y = \cos x\)

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \cos x\) là hàm số chẵn.

b)

    \(x\)

            \( - \pi \)

     \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

\( - \frac{\pi }{4}\)

0

\(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

  \(\pi \)

            \(\cos x\)

            \( - 1\)

            \( - \frac{{\sqrt 2 }}{2}\)

            \(0\)

            \(\frac{{\sqrt 2 }}{2}\)

1

            \(\frac{{\sqrt 2 }}{2}\)

0

\( - \frac{{\sqrt 2 }}{2}\)

            \( - 1\)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \cos x\) có tập xác định là \(\mathbb{R}\), tập giá trị là [-1;1] và đồng biến trên mỗi khoảng \(\left( { - \pi  + k2\pi ;k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\pi  + k2\pi } \right),\;k\; \in \;\mathbb{Z}\)

22 tháng 9 2016

thầy cô và các bạn biết câu nào giúp mình câu đó em rất cảm ơn ạ

26 tháng 2 2017

tự làm

6 tháng 4 2017

hỏi bạn à

Câu 1Tính   A. 0B. 1 C. 2D. 3Câu 2Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?  A. B.  C. D. Câu 3Tính   A. Không tồn tạiB. C.  D. Câu 4Tính   A.  0B. 4 C. 9D. Câu 5Cho hình lập phương ABCD.A’B’C’D’. Khi đó góc giữa đường thẳng BC và B’D’ là:  A. B.  C. D. Câu...
Đọc tiếp

Câu 1

Tính 

 

 

A. 0

B. 1

 

C. 2

D. 3

Câu 2

Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

 

C. 

D. 

Câu 3

Tính 

 

 

A. Không tồn tại

B. 

C. 

 

D. 

Câu 4

Tính 

 

 

A.  0

B. 4

 

C. 9

D. 

Câu 5

Cho hình lập phương ABCD.A’B’C’D’. Khi đó góc giữa đường thẳng BC và B’D’ là:

 

 

A. 

B. 

 

C. 

D. 

Câu 6

Tính .

 

 

A. 3

B. 

C. 

 

D. 2

Câu 7

Gọi  là VTCP của 2 đường thẳng d và d’. Nếu  thì:

 

 

A. 

B. 

 

C. 

D. 

Câu 8

Tính 

 

 

A. 

B. 

C. 

 

D. 

Câu 9

Có bao nhiêu đường thẳng đi qua 1 điểm và vuông góc với 1 mặt phẳng cho trước?

 

 

A. 0

B. 2

C. Vô số

 

D. 1

Câu 10

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và SA = SC, SB = SD. Khi đó:

 

 

A. 

B. 

 

C. 

D. 

Câu 11

Cho . Khi đó  bằng:

 

 

A. 

B. 

C. 

 

D. 

Câu 12

Phát biểu nào sau đây là sai?

 

 

A. Một đường thẳng vuông góc với một mặt phẳng thì đường đường thẳng đó vuông góc với mọi đường thẳng nằm trong mặt phẳng.

B. Một đường thẳng vuông góc với một mặt phẳng nếu đường thẳng đó vuông góc với hai đường thẳng nằm trong mặt phẳng

C. Cho hai mặt phẳng song song với nhau, một đường thẳng vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng còn lại.

 

D. Cho hai đường thẳng song song, một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng còn lại.

Câu 13

Cho ba đường thẳng phân biệt a, b, c. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

C. 

 

D. 

Câu 14

Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. Vẽ AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

C. 

 

D. 

Câu 15

Cho hình chóp S.ABC với đáy ABC là tam giác đều và SA vuông góc với đáy. Gọi I là trung điểm BC. Mệnh đề nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 16

Tính tổng 

 

 

A. 2

B. 

C. 

D. 4

 

Câu 17

Cho hình chóp S.ABCD với đáy ABCD là hình thoi tâm O và SA=SC. Khẳng định nào sau đây là đúng?

 

 

A. 

B. 

C. 

D. 

 

Câu 18

Tính 

 

 

A. Không tồn tại

B. 4

 

C. 

D. 

Câu 19

Tính 

 

 

A. 4

B. 

 

C. 0

D. Không tồn tại

Câu 20

Tính 

 

 

A. 3

B. 2

C. 0

 

D. 1

Câu 21

Cho . Tính 

 

 

A. 3

B. 2

C. 4

 

D. 1

Câu 22

Cho . Khi đó:

 

 

A. 

B. 

C. 

 

D. 

Câu 23

Cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Mệnh đề nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 24

Cho hình hộp ABCD.A’B’C’D’. Phát biểu nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 25

Tính .

 

 

A. 

B. 0

 

C. 

D. 

Câu 26

Tính . Tìm b.

 

 

A. 1

B. 

 

C. 

D. 2

Câu 27

Tính .

 

 

A. 

B. 6

C. 0

D. 1

 

Câu 28

Cho hàm số . Tính .

 

 

A. Không tồn tại

B. 2

C. 

D. 1

 

Câu 29

Cho hình chóp S.ABCD với SA = SB = SC = SD và đáy là hình vuông tâm O. Vẽ  và . Khi đó:

 

 

A. 

B. 

C. 

D. 

 

Câu 30

Tính .

 

 

A. 

B. 

C. 

D. 2

 

Câu 31

Tính  với .

 

 

A. 

B. 

C. Không tồn tại

D. 0

 

Câu 32

Cho  và . Khi đó  bằng:

 

 

A. Không tồn tại

B. 

C. 

D. 0

 

Câu 33

Tính 

 

 

A. 0

 

B. Không tồn tại

C. 

D. 

Câu 34

Tính 

 

 

A. 

 

B. 3

C. 

D. 2

Câu 35

Cho . Khi đó  bằng:

 

 

A. 

 

B. 

C. 

D. 0

Câu 36

Tính 

 

 

A. 1

 

B. 0

C. 

D. 

Câu 37

Tính 

 

 

A. 

 

B. 1

C. 

D. 2

Câu 38

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và SA vuông góc với đáy. Phát biểu nào sau đây là sai?

 

 

A. 

 

B. 

C. 

D. 

Câu 39

Cho . Khi đó  bằng

 

 

A. 

 

B. 

C. Không tồn tại

D. 

Câu 40

Cho . Tính .

 

 

A. 2

 

B. 

C. 1

D. 

1
27 tháng 4 2020

Bn nên xem lại cái đề

26 tháng 7 2020

Khó quá Chị/Anh ạ

26 tháng 7 2020

Đặc điểm nào sau đây Không Phải của đường sức điện trường đều?

A. Các đường sức song song cùng chiều

B. Các đường sức song song ngược chiều

C. Các đường sức là đường thẳng

D. Các đường sức cách đều

Đáp án B 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cot \left( { - x} \right) =  - \cot x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \cot x\) là hàm số lẻ.

b)

   \(x\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

  \(\cot x\)

  \(\sqrt 3 \)

    \(1\)

\(\frac{{\sqrt 3 }}{3}\)

     \(0\)

      \( - \frac{{\sqrt 3 }}{3}\)

    \( - 1\)

\( - \sqrt 3 \)

 c) Từ đồ thị trên, ta thấy hàm số \(y = \cot x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi  + k\pi } \right)\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

x

\( - \pi \)

\( - \frac{{5\pi }}{6}\)

\( - \frac{\pi }{2}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{2}\)

\(\frac{{5\pi }}{6}\)

\(\pi \)

\(y = \sin x\)

0

\( - \frac{1}{2}\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\)(Hình 24).

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25.

 

Cho hàm số \(y = \tan x\)a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).      \(x\)     \( - \frac{\pi }{3}\)     \( - \frac{\pi }{4}\)      \( - \frac{\pi }{6}\)0\(\frac{\pi }{6}\)\(\frac{\pi }{4}\)\(\frac{\pi }{3}\)\(y = \tan x\)???????Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi...
Đọc tiếp

Cho hàm số \(y = \tan x\)

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị của hàm số \(y = \tan x\) trên khoảng\(\;\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

      \(x\)

     \( - \frac{\pi }{3}\)

     \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(y = \tan x\)

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\tan x} \right)\) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số \(y = \tan x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = \pi \), ta được đồ thị của hàm số \(y = \tan x\) như hình dưới đây.

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số \(y = \tan x\).

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \tan \left( { - x} \right) =  - \tan x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \tan x\) là hàm số lẻ.

b)

    \(x\)

     \( - \frac{\pi }{3}\)

      \( - \frac{\pi }{4}\)

      \( - \frac{\pi }{6}\)

     \(0\)

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

  \(\tan x\)

\( - \sqrt 3 \)

   \( - 1\)

      \( - \frac{{\sqrt 3 }}{3}\)

     \(0\)

\(\frac{{\sqrt 3 }}{3}\)

      \(1\)

\(\sqrt 3 \)

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \tan x\) có tập xác định là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}} \right\}\), tập giá trị là \(\mathbb{R}\) và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).