K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

a: f(5)=75/2

=>\(a\cdot5^2=\dfrac{75}{2}\)

=>\(a=\dfrac{75}{2}:25=\dfrac{3}{2}\)

Vậy: \(y=f\left(x\right)=\dfrac{3}{2}x^2\)

Khi x=-3 thì \(y=\dfrac{3}{2}\left(-3\right)^2=\dfrac{3}{2}\cdot9=\dfrac{27}{2}\)

b: y=15

=>\(\dfrac{3}{2}x^2=15\)

=>\(x^2=10\)

=>\(x=\pm\sqrt{10}\)

a: Để y<2 thì \(0,5x^2< 2\)

=>x2<4

=>-2<x<4

b: Để y>2 thì 0,5x2>4

=>x2>4

=>x>2 hoặc x<-2

c: Để -2<y<2 thì \(x\in\left(-2;4\right)\cap\left(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\right)=\left(2;4\right)\)

23 tháng 11 2018

a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến

b, \(x=1+\sqrt{5}x\)

\(\Leftrightarrow x-x\sqrt{5}=1\)

\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)

\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)

Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)

b, \(y=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)

<=> x = 1

21 tháng 7 2020

a) Ta có \(a=1-\sqrt{5}< 0\) nên hàm số đã cho nghịch biến trên R.

b) Khi \(x=1+\sqrt{5}\) ta có:

\(y=\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)-1=\left(1-5\right)-1=-5\)

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

23 tháng 4 2017

Bài giải:

a) Thế x = 4 và y = 11 vào y = 3x +b ta có: 11 = 3.4 + b ⇔ b = -1. Khi đó hàm số đã cho trở thành: y = 3x – 1. Đây là đường thẳng đi qua 2 điểm A(0;-1) và B(1/3; 0)

b) Đồ thị hàm số y = ax + 5 đi qua điểm A(-1; 3) nên: 3 = a(-1) + 5

<=> a = 2

Khi đó hàm số đã cho trở thành : y = 2x + 5. Đây là đường thẳng đi qua hai điểm A(0; 5) và B (−52;0)(−52;0)


20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

6 tháng 2 2018

x

-2 -1 \(\dfrac{-1}{3}\) 0 \(\dfrac{1}{3}\) 1 2
\(y=3x^2\) 12 3 \(\dfrac{1}{3}\) 0 \(\dfrac{1}{3}\) 3 12

a: Khi x=-2 thì \(y=-3\cdot\left(-2\right)^2=-12\)

Khi x=-1 thì \(y=-3\cdot\left(-1\right)^2=-3\)

Khi x=-1/3 thì \(y=-3\cdot\dfrac{1}{9}=-\dfrac{1}{3}\)

Khi x=0 thì y=0

Khi x=1/3 thì \(y=-3\cdot\dfrac{1}{9}=-\dfrac{1}{3}\)

Khi x=1 thì y=-3

Khi x=2 thì y=-12

b: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9