K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

Hình như bạn ghi đề ko đúng, ở nửa đoạn \([-2;0)\) thì ko thể xác định được GTNN của hàm số khi \(m>0\)

7 tháng 11 2019

mk viết đúng ak bn : )

27 tháng 10 2019

Hàm số \(y=-x^2+2mx+1\) có  \(a=-1< 0;-\frac{b}{2a}=m\)nên đồng biến trên \(\left(-\infty;m\right)\)

Do đó để hàm số đồng biến trên khoảng \(\left(-\infty;3\right)\)thì ta phải có \(\left(-\infty;3\right)\subset\left(-\infty;m\right)\Leftrightarrow m\ge3.\)

NM
4 tháng 9 2021

ta có hàm số 

\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)

vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)

Vậy có hai giá trị của m 

9 tháng 10 2019

Mọi \(x_1;x_2\in\left(1;2\right)\)

G/s: \(x_1< x_2\)

Xét \(\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\frac{\left(-x_1^2+\left(m-1\right)x_1+2\right)-\left(-x_2^2+\left(m-1\right)x_2+2\right)}{x_1-x_2}\)

\(=\frac{-\left(x_1^2-x_2^2\right)+\left(m-1\right)\left(x_1-x_2\right)}{\left(x_1-x_2\right)}\)

\(=-\left(x_1+x_2\right)+m-1\)

Để hàm số nghịch biến thì \(\frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}< 0\Leftrightarrow m+1< x_1+x_2< 2+2\)=> \(m< 3\)