K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Ta có \(y'=3mx^2-6mx\Rightarrow y'=0\Rightarrow\begin{cases}x=0\\x=2\end{cases}\) với mọi m khác 0

Do y' đổi dấu qua x=0 và x=2 nên đồ thị có 2 điểm cực trị => Điều phải chứng minh 

Với \(x=0\Rightarrow y=3\left(m-1\right);x=2\Rightarrow y=-m-3\)

Do vai trò của A, B như nhau nên không mất tính tổng quát giả sử \(A\left(0;3m-3\right);B\left(2;-m-3\right)\)

Ta có : \(OA^2+OB^2-2OA^2=-20\Leftrightarrow9\left(m-1\right)^2+4+\left(m+3\right)^2-2\left(4-16m\right)^2=-20\)

                                           \(\Leftrightarrow11m^2+6m-17=0\Leftrightarrow\begin{cases}m=1\\m=-\frac{17}{11}\end{cases}\)

Kết luận : Với \(\begin{cases}m=1\\m=-\frac{17}{11}\end{cases}\) yêu cầu bài toán được thỏa mãn

 

27 tháng 4 2016

Ta có \(y'=4x^3-16x\)

Vì \(x_0=1\Rightarrow y_0=m-6;y'\left(x_0\right)=-12\)

Phương trình tiếp tuyến d của \(\left(C_m\right)\) tại điểm có hoành độ \(x_0=1\) là :

\(y=-12\left(x-1\right)+m-6=-12x+m+6\)

Phương trình hoành độ giao điểm của  \(\left(C_m\right)\) với d :

\(x^4-8x^2+m+1=-12x+m+6\Leftrightarrow x^4-8x^2+12-5=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x-5\right)=0\Leftrightarrow x=1,x=-1\pm\sqrt{6}\)

Vậy d và  \(\left(C_m\right)\) luôn cắt nhay tại 3 điểm 

\(A\left(1;m-6\right);B\left(-1\pm\sqrt{6};m+18\ne\sqrt{6}\right)\)

 
23 tháng 4 2016

Theo yêu cầu bài toán ta có \(\begin{cases}ab< 0\\AB=BC=CA\end{cases}\) \(\Leftrightarrow\begin{cases}m< 2\\8\left(m-2\right)^3+24=0\end{cases}\)

                                                                       \(\Leftrightarrow m=2-\sqrt[3]{3}\)

3 tháng 5 2016

Phương trình hoành độ giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) được viết thành :

    \(\left(x+1\right)\left(x^2-3mx+2m^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-m\right)\left(x-2m\right)=0\)

\(\Rightarrow\) Giao điểm của  \(\left(\Delta_m\right)\) và \(\left(C_m\right)\)  gồm \(A\left(-1;-m-m^2\right);B\left(m;0\right)\) và \(C\left(2m;m^2\right)\), trong số đó, A là điểm duy nhất có hoành độ không đổi (khi m thay đổi)

Đặt \(f_m\left(x\right)=x^3-\left(3m-1\right)x^2+2m\left(m-1\right)x+m^2\)

Các tiếp tuyến của  \(\left(C_m\right)\)  tại B và C lần lượt là các đường thẳng :

\(\left(\Delta_B\right):y=f_m'\left(x_B\right)x+y_b-f_m'\left(x_B\right)x_B\)

\(\left(\Delta_C\right):y=f_m'\left(x_C\right)x+y_C-f_m'\left(x_C\right)x_C\)

Ta cần tìm m để B và C cùng khác A và \(\Delta_B\backslash\backslash\Delta_C\), tức là :

\(\begin{cases}x_B\ne x_A\\x_C\ne x_A\\f'_m\left(x_B\right)=f'_m\left(x_C\right)\\y_B-f'_m\left(x_B\right)x_B\ne y_C-f'_m\left(x_C\right)x_C\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-1\\m\ne-\frac{1}{2}\\-m^2=2m^2+2m\\m^3\ne-4m^3-3m^2\end{cases}\)

                                                        \(\Leftrightarrow m=-\frac{2}{3}\)

 

21 tháng 4 2016

Phương trình hoành độ giao điểm của \(\left(C_m\right)\) và đường thẳng y = -1 là :

\(x^4-\left(3m+2\right)x^2+3m=-1\Leftrightarrow\left(x^2-1\right)\left(x^2-3m-1\right)=0\)

Đường thẳng y = -1 cắt  \(\left(C_m\right)\) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 khi và chỉ khi :

\(0 < 3m+1 < 4\) và \(3m+1\ne1\)

\(\Leftrightarrow\)\(-\frac{1}{3}< m\)< 1 và \(m\ne0\)

 
3 tháng 5 2016

Hai điểm cực trị của \(\left(C_1\right)\) là : \(A\left(0;3\right);B\left(2;-1\right)\Rightarrow\overrightarrow{AB}=\left(2;-4\right)\)

Phương trình AB : \(2x+y-3=0\)

Ta có : \(y'=3x^2-6mx+3\left(m-1\right)\)

           \(x_0=1\Rightarrow y_0=2m-1;y'\left(x_0\right)=-3m\)

Phương trình tiếp tuyến \(\Delta:y=-3m\left(x-1\right)+2m-1\)

                            hay \(3mx+y-5m+1=0\)

Yêu cầu bài toán  \(\Leftrightarrow\cos\left(AB;\Delta\right)=\cos60^0=\frac{1}{2}\)

                          \(\Leftrightarrow\frac{\left|6m+1\right|}{\sqrt{5\left(9m^2+1\right)}}=\frac{1}{2}\Leftrightarrow4\left(6m+1\right)^2=5\left(9m^2+1\right)\)

                          \(\Leftrightarrow99m^2+48m-1=0\)

                          \(\Leftrightarrow m=\frac{-8\pm5\sqrt{3}}{33}\) là những giá trị cần tìm

18 tháng 4 2016

Phương trình có hoành độ giao điểm \(\frac{-x+m}{x+2}=-x+\frac{1}{2}\Leftrightarrow\begin{cases}x\ne-2\\2x^2+x+2m-2=0\left(1\right)\end{cases}\)

Đường thẳng (d) cắt \(\left(C_m\right)\) tại 2 điểm A, B <=> (1) có 2 nghiệm phân biệt \(x\ne-2\)

\(\Leftrightarrow\begin{cases}\Delta=1-8\left(2m-2\right)>0\\2\left(-2\right)^2+\left(-2\right)+2m-2\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}17-16m>0\\m\ne-2\end{cases}\)\(\Leftrightarrow\begin{cases}m<\frac{17}{16}\\m\ne-2\end{cases}\)

\(A\left(x_1;-x_1+\frac{1}{2}\right);B\left(x_2;-x_2+\frac{1}{2}\right);\) trong đó x1, x2 là 2 nghiệm phân biệt của phương trình (1)

Theo Viet ta có \(\begin{cases}x_1+x_2=-\frac{1}{2}\\x_1x_2=m-1\end{cases}\)

\(AB=\sqrt{\left(x_2-x_1\right)^2+\left(x_1-x_2\right)^2}=\sqrt{2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]}=\frac{\sqrt{2\left(17-16m\right)}}{2}\)

\(d\left(O,d\right)=\frac{1}{2\sqrt{2}};S_{\Delta OAB}=\frac{1}{2}AB.d\left(O,d\right)=\frac{1}{2}.\frac{1}{2\sqrt{2}}.\frac{\sqrt{2\left(17-16m\right)}}{2}=1\)

\(\Leftrightarrow m=\frac{-47}{16}\)

Vậy \(m=\frac{-47}{16}\)

14 tháng 7 2016

Khoảng cách từ O đến d tính ntn v bn? @Hoàng Thị Tâm

27 tháng 4 2016

Ta có : \(A\left(0;\frac{1}{3}\right)\) và \(y'=4x^2-2\left(2m+1\right)x+m+2\)

Suy ra \(y'\left(0\right)=m+2\)

Tiếp tuyến của d cắt Ox tại \(B\left(-\frac{1}{3m+6};0\right)\) (m=-2 không thỏa mãn yêu cầu bài toán)

Khi đó diện tích của tam giác tạo bởi d với 2 trục tọa độ là :

\(S=\frac{1}{2}OA.OB=\frac{1}{2}.\frac{1}{3}.\left|\frac{-1}{3m+6}\right|=\frac{1}{18\left|m+2\right|}\)

Theo giả thiết ta có : \(\frac{1}{18\left|m+2\right|}=\frac{1}{3}\Leftrightarrow\left|m+2\right|=\frac{1}{6}\)

                                                  \(\Leftrightarrow m=-\frac{13}{6}\) hoặc \(m=-\frac{11}{6}\)

6 tháng 4 2016

\(y=-x^4+2\left(m+1\right)x^2+m+1\left(C_m\right)\)

\(y'=-4x^2+4\left(m+1\right)x=-4x\left(x^2-m-1\right)\)

Xét \(y'=0\Leftrightarrow-4x\left(x^2-m-1\right)=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m+1\left(1\right)\end{cases}\)

Hàm số có 3 điểm cực trị khi và chỉ khi phương trình \(y'=0\) có 3 nghiệm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 0 

\(\Leftrightarrow m+1>0\Leftrightarrow m>-1\) (*)

Với điều kiện (*) phương trình y' = 0 có 3 nghiệm phân biệt \(x,x=\pm\sqrt{m+1}\) và có 3 điểm cực trị của đồ thị \(C_m\) là \(A\left(0;m+1\right);B\left(-\sqrt{m+1;}-\left(m+1\right)^2+m+1;\right);C\left(\sqrt{m+1};-\left(m+1\right)^2+m+1\right)\)

3 điểm cực trị tạo thành 1 tam giác đều :

\(\Leftrightarrow AB=AC=CB\Leftrightarrow AB^2=AC^2=CB^2\) 

\(\Leftrightarrow\begin{cases}AB^2=AC^2\\AB^2=BC^2\end{cases}\)\(\Leftrightarrow\begin{cases}m+1+\left(m+1\right)^4=m+1+\left(m+1\right)^4\\m+1+\left(m+1\right)^4=4\left(m+1\right)\end{cases}\)

                              \(\Leftrightarrow m=\sqrt[3]{3}-1\)

 

27 tháng 4 2016

Tập xác định \(D=R\backslash\left\{2-m\right\}\)

Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)

a) Tiếp tuyến tại điểm có hoành độ x = 1 song song với đường thẳng :

\(y=x+1\) khi \(y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(x+m-2\right)^2}=-1\Leftrightarrow m=0;m=2\)

* Với m = 0 ta có phương trình tiếp tuyến \(y=-\left(x-1\right)-1=-x\)

* Với m = 2 ta có phương trình tiếp tuyến \(y=-\left(x-2\right)+3=-x+5\)

Vậy m = 0 là giá trị cần tìm

 

b) G\(m\ge1+\sqrt{2};m\le1-\sqrt{2}\)ọi \(M\left(x_0;y_0\right)\) là tiếp điểm. Ta có \(y'\left(x_0\right)=-\frac{1}{2}\)

\(\frac{m^2-2m-1}{\left(x_0+m-2\right)^2}=-\frac{1}{2}\) (*)

Yêu cầu bài toán suy ra (*) vô nghiệm, điều đó xảy ra khi :

\(m^2-2m-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}m\ge1+\sqrt{2}\\m\le1-\sqrt{2}\end{array}\right.\)

Vậy giá trị cần tìm là \(m\le1-\sqrt{2};m\ge1+\sqrt{2}\)