\(y=\left(m-1\right)x+26.\text{Hãy xác định m để}\)

a. Hàm số trên đồng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Lời giải

a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3

b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5

c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1

d) Hàm số bậc nhất

31 tháng 5 2017

a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)

Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)

Đồ thị của hàm số y = ax + b ( a khác 0)

15 tháng 6 2019

a) Vì đồ thị hàm số đi qua A(1;-1) nên ta có :

x= 1 ; y=-1 và thay vào hàm số ta có 

y= (2a+3) <=> -1 = (2a + 3)*1 <=> 2a + 3 = -1 <=> 2a = - 3 - 1 <=> 2a = -4 <=> a = -2 

Vậy đồ thị hàm số  có dạng y = ( -4 +3)x = -1x

- Ta có phương trình hoành độ giao điểm :

     -1x = 4x - 5

<=> -1x - 4x = -5

<=>-5x = -5 <=> x = 1 => y = -1x = -1 * 1 = -1 

Vậy 2 đồ thị hàm số giao nhau tại B ( 1; -1)

b) Vì hoành độ bằng 1 bằng 1 nên x = 1

Ta có phương trình hoành độ giao điểm :

(2a + 3 )x = -2x +2 

thay x = 1 vào phương trình ta có :

( 2a + 3)*1 = -2*1 + 2 

<=> 2a + 3 = -2+ 2 

<=> 2a = -2 +2 -3 <=> a = \(-\frac{3}{2}\)

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


23 tháng 4 2017

Bài giải:

a) Thế x = 4 và y = 11 vào y = 3x +b ta có: 11 = 3.4 + b ⇔ b = -1. Khi đó hàm số đã cho trở thành: y = 3x – 1. Đây là đường thẳng đi qua 2 điểm A(0;-1) và B(1/3; 0)

b) Đồ thị hàm số y = ax + 5 đi qua điểm A(-1; 3) nên: 3 = a(-1) + 5

<=> a = 2

Khi đó hàm số đã cho trở thành : y = 2x + 5. Đây là đường thẳng đi qua hai điểm A(0; 5) và B (−52;0)(−52;0)


8 tháng 6 2021

a/ Để (1) qua A

⇒1.m+1=4⇒m=3⇒1.m+1=4⇒m=3

⇒y=3x+1⇒y=3x+1

Hàm số đồng biến trên R

b/ x+y+3=0⇔y=−x−3x+y+3=0⇔y=−x−3

Do (1) song song (d) nên chúng có hệ số góc bằng nhau

⇒m=−1