Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0
<=> 2m - 1 > 0
<=> 2m > 1
<=> m > \(\frac{1}{2}\)
Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến
a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)
\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)
b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)
\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)
Câu 1: để hàm số có đồ thị hàm số đi qua điểm A và B nên tọa độ của A,B thỏa mãn đồ thị nên ta có hệ
\(\hept{\begin{cases}-2a+b=5\\a+b=-4\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=-1\end{cases}}\)
Câu 2 :
- để hàm số luôn nghịch biến thì hệ số góc của đường thẳng nhỏ hơn 0 nên : \(2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
- Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \(\frac{-2}{3}\)tức giao điểm có tọa độ \(\left(-\frac{2}{3};0\right)\)nên có phương trình :\(0=\frac{-2\left(2m-1\right)}{3}+m+2\Leftrightarrow-4m+2+3m+6=0\Leftrightarrow m=8\)
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
a: Để hàm số nghịch biên thì m-2<0
=>m<2
b: Thay x=3 và y=0 vào (d), ta đc:
3(m-2)+m+3=0
=>3m-6+m+3=0
=>4m-3=0
=>m=3/4
c: Tọa độ giao điểm là
2x-1=-x+2 và y=-x+2
=>x=1 và y=1
Thay x=1 và y=1 vào (d), ta được:
m-2+m+3=1
=>2m+1=1
=>m=0
Đk: m \(\ge\)0; \(m\ne9\)
Để hàm số \(y=\frac{-2}{\sqrt{m}-3}x+2\)luôn nghịch biến <=> \(\frac{-2}{\sqrt{m}-3}< 0\)
<=> \(\sqrt{m}-3>0\) (vì -2 <0)
<=> \(m>9\)
Vậy ...