Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(f\left(x\right)+3f\left(\frac{1}{3}\right)=x^2\left(1\right)\Rightarrow f\left(\frac{1}{3}\right)+3f\left(\frac{1}{3}\right)=\left(\frac{1}{3}\right)^2\Leftrightarrow4f\left(\frac{1}{3}\right)=\frac{1}{9}\Leftrightarrow f\left(\frac{1}{3}\right)=\frac{1}{36}\)
Thay f(\(\frac{1}{3}\)) = \(\frac{1}{36}\) vào (1) được : \(f\left(x\right)=x^2-3f\left(\frac{1}{3}\right)=x^2-\frac{1}{12}\)
Vậy \(f\left(x\right)=x^2-\frac{1}{12}\)
b) \(f\left(x\right)+2f\left(\frac{1}{x}\right)=2x+\frac{1}{x}\) (2) . Thay \(x=\frac{1}{x}\) vào \(f\left(x\right)\) và \(f\left(\frac{1}{x}\right)\) được :
\(f\left(\frac{1}{x}\right)+2f\left(x\right)=\frac{2}{x}+x\) \(\Leftrightarrow2f\left(\frac{1}{x}\right)+4f\left(x\right)=\frac{4}{x}+2x\) (3)
Lấy (3) trừ (2) theo vế được: \(\left[2f\left(\frac{1}{x}\right)+4f\left(x\right)\right]-\left[f\left(x\right)+2f\left(\frac{1}{x}\right)\right]=\left(2x+\frac{4}{x}\right)-\left(2x+\frac{1}{x}\right)\)
\(\Leftrightarrow3f\left(x\right)=\frac{3}{x}\Leftrightarrow f\left(x\right)=\frac{1}{x}\)
c) \(f\left(x\right)+2f\left(-x\right)=x+1\) (4) . Thay x = -x vào f(x) và f(-x) được :
\(f\left(-x\right)+2f\left(x\right)=-x+1\Leftrightarrow2f\left(-x\right)+4f\left(x\right)=-2x+2\) (5)
Lấy (5) trừ (4) theo vế được :
\(\left[2f\left(-x\right)+4f\left(x\right)\right]-\left[f\left(x\right)+2f\left(-x\right)\right]=\left(-2x+2\right)-\left(x+1\right)\)
\(\Leftrightarrow3f\left(x\right)=-3x+1\Rightarrow f\left(x\right)=\frac{-3x+1}{3}\)
Câu h đề không đẹp lắm, sửa thành-2x nha
f) x2-2x+5
=x2-2x+1+4
=(x-1)2+4
Vì: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Min = 4 khi x=1
g) 2x2-6x
= \(\sqrt{2x}^2-2.\sqrt{2x}.\dfrac{3\sqrt{2}}{2}+\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{3\sqrt{2}}{2}\right)^2\)
= \(\left(\sqrt{2x}-\dfrac{3\sqrt{2}}{2}\right)^2-\dfrac{9}{2}\)
Tương tự bài trên
h) x2+y2-2x+6y+10
=(x2-2x+1)+(y2+6y+9)
=(x-1)2+(y+3)2
Min=0 khi x=1; y=-3
nói thật bn xạo lz vc đề thế nào thì để đó chứ ko đẹp thì nó ko có Min à
Sửa đề: Cho hình bình hành ABCD
Xét tứ giác DBEC có
BE//DC
BE=DC
DO đó: DBEC là hình bình hành
Suy ra: DB//CE và DB=CE
Xét tứ giác BDFC có
BC//DF
BC=DF
Do đó: BDFC là hình bình hành
Suy ra: BD//CF và BD=CF
Ta có: BD//CF
BD//CE
CF và CE có điểm chung là C
Do đó: F,C,E thẳng hàng
mà CE=CF(=BD)
nên C la trung điểm của FE
hay F và E đối xứng nhau qua C
f(0)=a*0+b=b
f(f(0))=a*b+b
f(f(f(0)))=a*(a*b+b)+b=\(a^2b+ab+b\)=2 (1)
tương tư ta cũng có f(f(f(1)))=\(a^3+a^2b+ab+b\)=29 (2)
thế (1)vao (2) ta được \(a^3+2=\)29\(\Leftrightarrow a^3=29-2=27\Rightarrow a=3\)
mình ko gặp nhưng cũng ko hiểu cái này lắm, để mình xem lại một chút