K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 4 2018

Lời giải:

Ta có: \(y=\frac{x+2}{2x+3}\Rightarrow y'=\frac{-1}{(2x+3)^2}\)

Gọi tiếp điểm có hoành độ là $a$. Khi đó pt tiếp tuyến của $(C)$ tại tiếp điểm là:

d: \(y=f'(a)(x-a)+f(a)=\frac{-1}{(2a+3)^2}(x-a)+\frac{a+2}{2a+3}(*)\)

Từ đây ta suy ra :

\(d\cap Ox=A(2a^2+8a+6,0)\)

\(d\cap Oy=B(0, \frac{2a^2+8a+6}{(2a+3)^2})\)

Vì tam giác $OAB$ cân tại $O$ nên:

\(OA=OB\Leftrightarrow |2a^2+8a+6|=|\frac{2a^2+8a+6}{(2a+3)^2}|\)

\(\Leftrightarrow |2a^2+8a+6|\left(1-\frac{1}{(2a+3)^2}\right)=0\)

Hiển nhiên $|2a^2+8a+6|\neq 0$ do $A$ khác $O$

\(\Rightarrow 1-\frac{1}{(2a+3)^2}=0\Rightarrow (2a+3)^2=1\)

\(\Rightarrow 2a+3=\pm 1\Rightarrow a=-2; a=-1\)

Thay vào $(*)$ suy ra PTTT là:
\(\left[\begin{matrix} y=-x\\ y=-x-2\end{matrix}\right.\)

12 tháng 6 2018

Chọn B.

NV
25 tháng 4 2019

\(y'=x^2-2x+2\)

Gọi tiếp tuyến d tại \(M\left(a;b\right)\) có phương trình:

\(y=\left(a^2-2a+2\right)\left(x-a\right)+\frac{1}{3}a^3-a^2+2a+1\)

Giao của d với Ox và Oy lần lượt là \(\left\{{}\begin{matrix}A\left(\frac{2a^3-3a^2-3}{3\left(a^2-2a+2\right)};0\right)\\B\left(0;\frac{2a^3-3a^2-3}{-3}\right)\end{matrix}\right.\)

\(OA^2=OB^2\Leftrightarrow\frac{\left(2a^3-3a^2-3\right)^2}{9\left(a^2-2a+2\right)^2}=\frac{\left(2a^2-3a^2-3\right)^2}{9}\)

\(\Leftrightarrow\left(a^2-2a+2\right)^2=1\) \(\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)

Phương trình tiếp tuyến: \(y=x+\frac{4}{3}\)

25 tháng 4 2019

Giỏi quá mk cảm ơn bạn nhiều

1 tháng 12 2018

Chọn C.

10 tháng 2 2021

M ( xo, yo)

10 tháng 2 2021

Không cần nữa nhé mn ơi, mình lm đc r nè

 

6 tháng 7 2017

- Hàm số đã cho xác định với ∀x ≠ 1.

- Ta có: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Gọi M ( x 0 ;   y 0 )  là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 )   <   0 , nên có: y ' ( x 0 )   =   - 1 .

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.

Chọn D

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$y'=\frac{-1}{(x+1)^2}$

Giao điểm của đồ thị $y=\frac{x+2}{x+1}$ vớ trục hoành là $(-2,0)$

PTTT của $y=\frac{x+2}{x+1}$ tại điểm tiếp điểm $(-2,0)$ là:

$y=f'(-2)(x+2)+f(-2)=\frac{-1}{(-2+1)^2}(x+2)+0$

$y=-x-2$

Đường tiếp tuyến $y=-x-2$ cắt trục tung tại điểm có tung độ:

$y=-0-2=-2$

 

NV
2 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)

b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)

c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm

Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

Do tiếp tuyến qua A nên:

\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)

NV
2 tháng 4 2021

d.

Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)