\(y=mx+3\) và \(y=\left(2m+1\right)x-5\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Cho hàm số bậc nhất y = mx + 3 và y = (2m + 1)x – 5. Tìm giá trị của m để đồ thị của hai hàm số đã cho là:

a) Hai đường thẳng song song với nhau;

b) Hai đường thẳng cắt nhau.

23 tháng 4 2017

a) Hai đường thẳng cắt nhau khi 2m + 1 ≠ 2 hay m ≠ 0,5, k túy ý.

b) Hai đường thẳng song song với nhau khi 2m + 1 = 2 và 3k ≠ 2k - 3 hay khi m = 0,5 và k ≠ -3.

c) Hai đường thẳng trùng nhau khi 2m + 1 = 2 và 3k = 2k - 3 hay khi m = 0,5 và k = -3.

23 tháng 4 2017

Bài giải:

a) Hai đường thẳng cắt nhau khi 2m + 1 ≠ 2 hay m ≠ 0,5, k túy ý.

b) Hai đường thẳng song song với nhau khi 2m + 1 = 2 và 3k ≠ 2k - 3 hay khi m = 0,5 và k ≠ -3.

c) Hai đường thẳng trùng nhau khi 2m + 1 = 2 và 3k = 2k - 3 hay khi m = 0,5 và k = -3

23 tháng 4 2017

y = (k+1)x +3 (d)

và y = (3-2k)x + 1 (d’)

Các hàm số đã cho là hàm số bậc nhất khi:

bai 36

a) Vì đã có 3 ≠ 1 nên (d) // (d’) khi và chỉ khi

k+1 = 3 – 2k

k = 2/3 (TMĐK (*))

Vậy với k = 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) song song với nhau.

b) Hai đường thẳng (d) cắt (d’) khi và chỉ khi k+1 ≠ 3 – 2k

k 2/3

Vậy với k ≠ -1, k ≠3/2 và k ≠ 2/3 thì đồ thị của hai hàm số là hai đường thẳng (d) và (d’) cắt nhau.

c) Hai đường thẳng (d) và (d’) không thể trùng nhau vì có tung độ gốc khác nhau (do 3 ≠ 1).

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

7 tháng 1 2018

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

a) Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Để học tốt Toán 9 | Giải toán lớp 9

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

b) Đồ thị của hai hàm số y = mx + 3 và y = (2m + 1)x – 5 là hai đường thẳng cắt nhau khi và chỉ khi:

    m ≠ 2m + 1 => m ≠ -1.

Kết hợp với điều kiện trên, ta có:

Để học tốt Toán 9 | Giải toán lớp 9

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

a. Để hai đường thẳng cắt nhau thì:

$m\neq 2m+1$

$\Leftrightarrow m\neq 1$
b. Để hai đường thẳng song song với nhau thì:
$2m+1=m$

$\Leftrightarrow m=1$

19 tháng 7 2019

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Để học tốt Toán 9 | Giải toán lớp 9

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

15 tháng 12 2016

2/ Để 2 đường thẳng này // thì 

\(a-1=3-a\Leftrightarrow a=2\)

Phần còn lại không hiểu bạn muốn hỏi gì luôn. Chép câu hỏi gốc lên đi b

1/ Lên mạng tìm khái niệm nhé :)

15 tháng 12 2016
// <=> a-1=3-a (vì 1#2) <=> a = 2
2 tháng 10 2021

2 hàm số bậc nhất \(y=mx+3,y=\left(2m+1\right)x-5\left(đk:m\ne0,m\ne-\dfrac{1}{2}\right)\)

a) Để 2 đường thẳng song song với nhau thì:

\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=2m+1\\3\ne-5\left(luôn.đúng\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m=-1\end{matrix}\right.\)

b) Để 2 đường thẳng cắt nhau:

\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne2m+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\ne-1\end{matrix}\right.\)

c) Để 2 đường thẳng vuông góc với nhau:

\(\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\m\left(2m+1\right)=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\\2m^2+m+1=0\left(VLý.do.2m^2+m+1=2\left(m+\dfrac{1}{4}\right)^2+\dfrac{7}{8}>0\right)\end{matrix}\right.\)

Vậy 2 đường thẳng này không vuông góc với nhau với mọi m

2 tháng 10 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}m=2m+1\\-5\ne3\end{matrix}\right.\Leftrightarrow m=-1\\ b,\Leftrightarrow m\ne2m+1\Leftrightarrow m\ne-1\\ c,\Leftrightarrow m\left(2m+1\right)=-1\\ \Leftrightarrow2m^2+m+1=0\\ \Delta=1-8< 0\\ \Leftrightarrow m\in\varnothing\)

Vậy 2 đt không thể vuông góc nhau

2 tháng 10 2021

Anser reply image

Lai cho cá vàng đi ạ

 
2 tháng 10 2021

a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)

Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số  \(a'=2m+1,b'=2k-3\)

Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)

                                                                      \(\Leftrightarrow m\ne-\frac{1}{2}\)

Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:

         \(2=2m+1\) và \(3k\ne2k-3\)

Kết hợp với điều kiện trên ta có:  \(m=\frac{1}{2}.k\ne-3\)

 b) Hai đường thẳng song song:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)

c) Hai đường thẳng trùng nhau:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)