K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Ta có:

n chia hết cho 3 và 4 \( \Leftrightarrow \)n chia hết cho 12 (do (3,4) =1)

Do đó: nếu n là phần tử của tập hợp A thì n cũng là phần tử của tập hợp B và ngược lại.

Hay mọi phần tử của tập hợp A đều là phần tử của tập hợp B và ngược lại.

Vậy \(E \subset G\) và \(G \subset E\) hay E = G.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Lấy n bất kì thuộc tập hợp B.

Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)

\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)

\( \Rightarrow n \in A\)

Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)

20 tháng 8 2016

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

20 tháng 8 2022

a) A ⊂ C Ta có x chia hết cho 12 => x chia hết cho 3 và 4 => đpcm

   B ⊂ C Ta có x  chia hết cho 12 mà 12  chia hết cho 6 => đpcm

b) A ∪ B =  { x ∈ N | x chia hết cho 4 và x chia hết cho 6 } 

Vì x chia hết cho 6 và 4 => x chia hết 12 => đpcm

c ) Với x=4 thì x chia hết cho 4 thỏa mãn A 

                        x không chia hết cho 6 không thỏa mãn B 

=>A không phải là con của B.

20 tháng 8 2022

kkk

9 tháng 10 2017

Chứng minh: m và n không chia hết cho 3, khi đó:

m= 3a(+-)1, n=3b(+-)1 (a,b thuộc N) (hoặc cộng hoặc trừ)

=> m^2+n^2= 9.a^2(+-)6a+1+9.b^2(+-)6b+1= 3(3.a^2(+-)2a+3.b^2(+-)2b)+2

vì 3(3.a^2+2a+3.b^2+2b) chia hết cho 3 mà 2 không chia hết cho 3=> m^2+n^2 không chia hết cho 3 là trái giả thiết

vậy m^2+n^2 chia hết cho 3 thì m+n chia hết cho 3

vậy m^2+n^2 chia hết cho 3 thì m và n chia hết cho 3

n là bội chung của 4 và 6 nên n là bội của 12

=>X=Y

16 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

NV
15 tháng 11 2018

1. Giả sử \(a-3⋮a^2+2\Rightarrow\dfrac{a-3}{a^2+2}=A\) \(\left(A\in Z;A\ne0\right)\)

\(\Rightarrow a-3=A.a^2+2A\Rightarrow A.a^2-a+2A+3=0\)

\(\Delta=1-4A\left(2A+3\right)\ge0\Rightarrow-8A^2-12A+1\ge0\)

\(\Rightarrow\dfrac{-3-\sqrt{11}}{4}\le A\le\dfrac{-3+\sqrt{11}}{4}\)

Mà A nguyên \(\Rightarrow A=0\) hoặc \(A=-1\)

\(A=0\Rightarrow a-3=0\Rightarrow a=3\)

\(A=-1\Rightarrow-a^2-a+1=0\) \(\Rightarrow\) pt ko có nghiệm nguyên

Vậy a=0 thì a-3 chia hết \(a^2+2\)

2. \(x^2-2y=1\Rightarrow2y=x^2-1=\left(x-1\right)\left(x+1\right)\)

Nếu x chẵn \(\Rightarrow x=2\Rightarrow\) y không phải số tự nhiên (loại)

Nếu x lẻ \(\Rightarrow x-1\)\(x+1\) đều là số chẵn \(\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)

Đặt \(\left(x-1\right)\left(x+1\right)=4k\) với \(k\in N;k\ge1\)

\(\Rightarrow2y=4k\Rightarrow y=2k\)

Nếu \(k=1\Rightarrow y=2\Rightarrow x^2=2y+1=5\) \(\Rightarrow\) x không phải số tự nhiên (loại)

Nếu \(k>1\) \(\Rightarrow\) y là số chẵn lớn hơn 2 \(\Rightarrow\) y không phải là số nguyên tố

\(\Rightarrow\)Không tồn tại cặp số nguyên tố (x;y) nào để \(x^2-2y=1\)

3. Nếu d=0 =>d chia hết cho 6. Xét d>0, d là STN

Ta luôn có \(p>2\) do nếu \(p=2\Rightarrow p+2d=2\left(d+1\right)\) là hợp số, vô lý

\(\Rightarrow\) p là số lẻ \(\Rightarrow d\) là số chẵn (vì nếu d lẻ thì p+d chẵn là hợp số) \(\Rightarrow d⋮2\)

TH1: \(p=3a+1\)

Nếu \(d=3b+1\Rightarrow p+2d=3a+1+6b+2=3\left(a+2b+1\right)⋮3\)

\(\Rightarrow\) vô lý (do giả thiết p+2d là số nguyên tố)

Nếu \(d=3b+2\Rightarrow p+d=3a+1+3b+2=3\left(a+b+1\right)⋮3\) vô lý

Vậy \(d=3b\Rightarrow d⋮3\Rightarrow d⋮6\)

TH2: \(p=3a+2\)

Nếu \(d=3b+1\Rightarrow p+d=3a+2+3b+1=3\left(a+b+1\right)⋮3\) (loại)

Nếu \(d=3b+2\Rightarrow p+2d=3a+2+6b+4=3\left(a+2b+2\right)⋮3\) (loại)

Vậy \(d=3b⋮3\Rightarrow d⋮6\)

Kết luận: nếu p, p+d, p+2d là số nguyên tố thì d chia hết cho 6

4. Đề sai. Ta lấy ví dụ n=3 \(\Rightarrow2^3+1=9\) là hợp số, nhưng \(2^3-1=7\) là số nguyên tố

Hoặc \(n=5...\)