Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x2 - 3xy + 2y2 = 0
<=> x2 - xy - 2xy + 2y2 = 0
<=> x(x - y) - 2y(x - y) = 0
<=> (x - y)(x - 2y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)
*) Khi x = y
Vì x > y > 0 => x \(\ne y\)(loại)
* Khi x = 2y
=> x - y = 2y - y
=> y > 0 (Vì x - y > 0) (tm)
Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)
Ta có : x2 +2y2 -3xy=0
<=> x2 - 2xy + y2 + y2 -xy =0
<=> (x - y)2 + y(y - x) =0
<=> (y - x)2 + y(y - x) =0
<=> (y - x)(y - x + y) =0
<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)
Thay x=2y vào A ta đc
A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)
A= 4
Áp dụng BĐT Cô si ta có:
\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)
\(\Rightarrow x^3+8y^3+1-6xy\ge0\)
Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)
Khi đó:
\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)
x + y = 2
=> ( x + y )2 = 4
<=> x2 + 2xy + y2 = 4
<=> 2xy + 10 = 4
<=> 2xy = -6
<=> xy = -3
Ta có : M = x3 + y3 = ( x + y )( x2 - xy + y2 ) = 2( 10 + 3 ) = 26
Ta có : \(x+y=2\)
\(\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow x^2+y^2+2xy=4\)
Mà \(x^2+y^2=10\)
\(\Rightarrow10+2xy=4\)
\(\Rightarrow2xy=-6\)
\(\Rightarrow xy=-3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10+3\right)=2.13=26\)
Vậy \(x^3+y^3=26\)
Ta có : (x+y)2+7x+7y+y2+6=0
( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0
( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)
\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)
\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)
\(\Rightarrow\)......
lon so roi,
thay -5/4 thành -5/2 ; 5/4 thành 5/2
-15/4 thành -5 ; 5/2 thành 0
\(x^2-6xy+9y^2=0\)
\(\Rightarrow x^2-2.x.3y+\left(3y\right)^2=0\)
\(\Rightarrow\left(x-3y\right)^2=0\)
\(\Rightarrow x-3y=0\)
\(\Rightarrow x=3y\)
Thay x = 3y vào biểu thức A ,có :
\(\dfrac{3y+y}{3y-y}=\dfrac{4y}{2y}=2\)
Vậy giá trị của biểu thức A tại \(x^2-6xy+9y^2=0\) là 2