K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

gọi thương của phép chia a cho 7 là x ta có a=7x+3

gọi thương của phép chia b cho 7 là y ta có

b=7y+5

ta có ab=(7x+3)(7y+5)=49xy+35x+21y+15 =7(7xy+5x+3y+2)+1

Vậy số dư của phép chia ab cho 7 là 1

20 tháng 10 2016

cách giải

lời giải luôn 

1/ a=5k+2; b=5n+3 

(ab là a nhân b nếu là ab xẽ khác)

(5k+2)(5n+3)=25k.n+3.5.k+10n+6=5(5k.n+3k+2.n+1)+1 vây ab chia 5 dư 1

2/ a=7k+3

a62=7.7.k^2+2.3.7k+9=7(7k^2+6k+1)+2 vậy a^2 chia 7 dư 2

17 tháng 8 2016

1) dư 1

2)dư 2 k mình nha

17 tháng 6 2019

a chia 7 dư 1 => a=7x+1 ( x thuộc N)

b chia 7 dư 2 => b=7k+2 (k thuộc N)

=>  ab=(7x+1)(7k+2)=49xk+14x+7k+2

vì 49xk; 14x; 7k đều chia hết cho 7

=> tích ab chia 7 dư 2

17 tháng 6 2019

Gọi \(a=3k+1;b=3m+2\)

Ta có:\(ab=\left(3k+1\right)\left(3m+2\right)=9km+6k+3m+2\) chia 3 dư 2.

Vậy....

17 tháng 7 2015

a : 5 dư 4 => a = 5q + 4

b chia 5 dư 3 => b = 5t + 3 

ab = (5q + 4)(5t + 3) = 25qt + 15q + 20t +12 = 25qt + 15q +20t + 10 + 2 = 5 ( 5qt + 3q + 4t + 2) + 2 chia 5 dư 2 

VẬy ab chia 5 dư 2

4 tháng 8 2017

Theo bài ra,a=5k+4 và b=5q+3

=>a*b=(5k+4)*(5q+3)

         =5k*5q+5k*3+4*5q+4*3

          =25*k*q+15*k+20*q+12

Dễ rồi nhé

4 tháng 8 2017

Ta có:

a : 5 ( R = 4 )

b : 5 ( R = 3 )

=> ab : 5  ( R = 2 ) { vì 4.3 : 5 ( R = 2 ) } 

16 tháng 9 2015

Đặt a=4m+1, b=4n+2(m,n\(\in\)N)

=>ab=(4m+1)(4n+2)

= 16mn+8m+4n+2

Ta thấy 16mn+8m+4n chia hết cho 4

=> ab:14 dư 2

1 tháng 9 2018

ta có : \(a\) chia cho \(7\) dư 2 \(\Rightarrow a=7n+2\)

ta có : \(b\) chia cho \(7\) dư 5 \(\Rightarrow b=7m+5\)

\(\Rightarrow ab=\left(7n+2\right)\left(7m+5\right)=49nm+35n+14m+10\)

\(=7\left(7nm+5n+2m+1\right)+3\)

\(\Rightarrow ab\) chia \(7\)\(3\)

vậy ...........................................................................................................................

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

25 tháng 8 2016

Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)

Ta có: a.b = (5.m + 1).(5.n + 2)

= (5.m + 1).5.n + (5.m + 1).2

= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2

=> a.b chia 5 dư 2

25 tháng 8 2016

bang 42 nha ban