Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)
\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh
b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm
\(\frac{a}{b}=\frac{ad}{bd}\)
\(\frac{c}{d}=\frac{cb}{bd}\)
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)
Giả sử : \(\frac{a}{b}=\frac{c}{d}\) thì ad = bc
Suy ra : ad < bc thì \(\frac{a}{b}< \frac{c}{d}\) (đpcm)
a)
Có \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\) (vì bd > 0)
Vậy \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (với b, d > 0)
b)
Có ad < bc và bd > 0
\(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Vậy \(ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (với b, d > 0)
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)
Có \(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)
Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow b\left(a+n\right)=a\left(b+n\right)=ab+an< ab+bn\)
\(\Leftrightarrow a< b\)( Vì n>0)
Tương tự :
\(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
\(\frac{a}{b}=\frac{a+n}{b+n}\Leftrightarrow a=b\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
=> ad + ab < ab + bc
=> a(d + b) < b(a + c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: ad < bc
=> ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)