Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= 1-1/y^2-1/x^2+1/x^2y^2
ta cs: x+y=1
cs: xy=< (x+y)^2/4=1/4
=> 1/x^2y^2>=1/16
có: ...
cố tử thần bí à :>
\(\frac{1}{4}=\frac{\left(x+y\right)^2}{4}\ge\frac{\left(2\sqrt{xy}\right)^2}{4}=xy\)
\(P=\frac{1}{x^2y^2}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+1=\frac{1-\left(x^2+y^2\right)}{x^2y^2}+1=\frac{1-\left(x+y\right)^2}{x^2y^2}+\frac{2}{xy}+1\ge\frac{2}{\frac{1}{4}}+1=9\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Cần điều kiện x;y dương
\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)
\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)
theo nghiệm Fx=Gx mũ 2
suy ra x mũ 2 +1 mũ x 2
suy ra chịch chịch chịch