Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2
Ta có:
k2+(k+1)2+k2.(k+1)2
=k2+k2+2k+1+k4+2k3+k2
=k4+2k3+3k2+2k+1
=(k2+k+1)2
=[k(k+1)+1]2 là số chính phương lẻ.
Gọi 2 số chính phương liên tiếp là a2 và (a + 1)2
Ta có: \(A=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=\left[a\left(a+1\right)\right]^2+2a^2+2a+1\)
\(=\left[a\left(a+1\right)\right]^2+2a\left(a+1\right)+1=\left[a\left(a+1\right)+1\right]^2\)
Ta thấy \(a\left(a+1\right)+1\) là số lẻ nên A là số chính phương lẻ (đpcm)
gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2
theo đề bài ta có :
k^2 + (k+1)^2 + k^2(k+1)^2
= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)
= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2
= k^4 + 2k^3 + 3k^2 + 2k + 1
= k^4 + k^2 + 1 + 2k^3 + 2k^2 + 2k
= (k^2 + k + 1)^2
= [k(k+1)+1]^2
k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ
=> [k(k+1)+1)^2 là số chính phương lẻ
Gọi 2 số chính phương liên tiếp đó là n2 ; (n+1)2
ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)
Không đúng: VD: 25;36 : 25+36 +25.36=71+900 =971 không là số chính phương
Gọi hai số chính phương liên tiếp là k2 và (k+1)2
Ta có:
k2 + (k+1)2 + k2(k+1)2
= k2 + k2 + 2k + 1 +k4 + 2k3 + k2
= k4 + 2k3 + 3k2 + 2k + 1
= (k2+k+1)2
= [k(k+1)+1]2 là số chính phương lẻ.
\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)
\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)
\(\Leftrightarrow0=0\) (luôn đúng).
\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)