Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)
M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu
a,
\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
b,
\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)
\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)
\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)
\(=\left(a-b\right)2b=2ab-2b^2\)
Chứng minh:
\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow2\left(\sqrt{b+1}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow\frac{2}{\sqrt{b+1}+\sqrt{b}}< \frac{1}{\sqrt{b}}\)
\(\Leftrightarrow2\sqrt{b}< \sqrt{b+1}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{b}< \sqrt{b+1}\)(đúng)
Cái còn lại tương tự
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Ta có:
\(A-B=\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}>0\)
Do đó: B < A và:
\(\frac{\left(a-b\right)^2}{8\left(A-B\right)}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)}{4\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
Mà: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}=\frac{a+b+2\sqrt{ab}}{4}=\frac{a+b}{4}+\frac{\sqrt{ab}}{2}=\frac{A+B}{2}\)
\(B< A\Rightarrow B< \frac{A+B}{2}< A\left(đpcm\right)\)