Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).
Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).
Vì \(Ox \bot Oy\) tại \(O\)nên tam giác \(AOB\) và tam giác \(AOC\) đều vuông tại \(O\).
Ta có: \(OA = 3;OB = 3;OC = 3\)
\(BC = OB + OC = 3 + 3 = 6\).
Áp dụng định lí Py – ta – go cho tam giác \(AOB\) ta có:
\(O{A^2} + O{B^2} = A{B^2}\)
\( \Leftrightarrow {3^2} + {3^2} = A{B^2}\)
\( \Leftrightarrow A{B^2} = 9 + 9 = 18\)
\( \Leftrightarrow AB = \sqrt {18} = 3\sqrt 2 \)
Áp dụng định lí Py – ta – go cho tam giác \(AOC\) ta có:
\(O{A^2} + O{C^2} = A{C^2}\)
\( \Leftrightarrow {3^2} + {3^2} = A{C^2}\)
\( \Leftrightarrow A{C^2} = 9 + 9 = 18\)
\( \Leftrightarrow AC = \sqrt {18} = 3\sqrt 2 \)
Chu vi tam giác \(ABC\) là:
\(C = AB + AC + BC = 3\sqrt 2 + 3\sqrt 2 + 6 = 6 + 6\sqrt 2 \) (đơn vị độ dài)
Vì \(Ox \bot Oy\) nên \(OA\) vuông góc với \(BC\) tại \(O\). Do đó, \(OA\) là đường cao tam giác \(ABC\) ứng với cạnh \(BC\).
Diện tích tam giác \(ABC\) là:
\(S = \dfrac{1}{2}OA.BC = \dfrac{1}{2}.3.6 = 9\) (đơn vị diện tích)
Vậy chu vi tam giác \(ABC\) là \(6 + 6\sqrt 2 \) đơn vị độ dài và diện tích tam giác \(ABC\) là 9 đơn vị diện tích.
Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay -
a) Quan sát hình 24, ta thấy:
Tung độ giao điểm của hai đường thẳng \({d_1},{d_2}\) đều bằng 2.
Nhận xét: Hai chuyển động đều có cùng tốc độ ban đầu là 2m/s.
b) Trong 2 đường thẳng \({d_1},{d_2}\) đường thẳng d2 có hệ số góc lớn hơn.
c) Từ giây thứ nhất trở đi, vật thứ hai có tốc độ lớn hơn vì đường thẳng d2 cao hơn đường thẳng d1 từ giây thứ nhất.
Nhìn câu b thấy "chạy chạy" chắc hẳn là độ lầy của câu này cũng siêu cao :v, đang ngu não chờ tối tối làm thử :v
P/s : up lên CHH luôn cho các thánh theo dõi :V
mấy bạn làm nêu hộ hướng ch/minh giùm cái vs nha 8.8
cảm ưn nhièu
a) * Vẽ đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\)
Cho x = 0 thì y = 3, ta được điểm P(0; 3) thuộc đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\)
Cho y = 0 thì x = 6 ta được điểm A(6; 0) thuộc đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\)
Vậy đồ thị hàm số \(y = - \dfrac{1}{2}x + 3\) là đường thẳng đi qua hai điểm P(0; 3) và điểm A(6; 0).
* Vẽ đồ thị hàm số y = 2x – 2
Cho x = 0 thì y = -2 ta được điểm Q(0; -2) thuộc đồ thị hàm số y = 2x – 2
Cho y = 0 thì x = 1 ta được điểm B(1; 0) thuộc đồ thị hàm số y = 2x -2
Vậy đồ thị hàm số y = 2x – 2 là đường thẳng đi qua hai điểm Q(0; -2) và B(1; 0)
b) Ta có: A là giao điểm của đường thẳng \(y = - \dfrac{1}{2}x + 3\) với trục hoành nên \( - \dfrac{1}{2}x + 3 = 0\) suy ra x = 6 nên A(6; 0)
Ta có: B là giao điểm của đường thẳng y = 2x – 2 với trục hoành nên 2x – 2 = 0 suy ra x = 1 nên B(1; 0)
Xét phương trình hoành độ giao điểm của hai đường thẳng \(y = - \dfrac{1}{2}x + 3\) và y = 2x – 2 ta có:
\(\begin{array}{l} - \dfrac{1}{2}x + 3 = 2{\rm{x}} - 2\\ \Rightarrow 3 + 2 = \dfrac{1}{2}x + 2{\rm{x}}\\ \Rightarrow 5 = \dfrac{5}{2}x\\ \Rightarrow x = 2 \Rightarrow y = 2\end{array}\)
Vì C là hoành độ giao điểm của hai đường thẳng \(y = - \dfrac{1}{2}x + 3\) và y = 2x – 2 nên C(2; 2)
Gọi H là hình chiếu của C lên trục Ox
Khi đó: CH = 2
Mặt khác AB = 5 cm
Diện tích tam giác ABC là; \({S_{ABC}} = \dfrac{1}{2}CH.AB = \dfrac{1}{2}.2.5 = 5\left( {c{m^2}} \right)\)
a: Tạo độ A là:
\(\left\{{}\begin{matrix}y=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)
Vậy: O(0;0); A(2;0); B(0;2)
\(OA=\sqrt{\left(2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2}=2\)
\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{2^2}=2\)
b: \(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=2\sqrt{2}\)
Chu vi tam giác OAB là:
\(C_{OAB}=OA+OB+AB=4+2\sqrt{2}\)
Ta có: Ox\(\perp\)Oy
=>OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot AO\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)
a)
- Vẽ đồ thị hàm số \(y = x\).
Cho \(x = 1 \Rightarrow y = 1 \Rightarrow \)Đồ thị hàm số đi qua điểm \(M\left( {1;1} \right)\).
Đồ thị hàm số \(y = x\) là đường thẳng đi qua hai điểm \(O\) và \(M\).
- Vẽ đồ thị hàm số \(y = x + 2\)
Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(A\left( {0;2} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 2}}{1} = - 2\) ta được điểm \(B\left( { - 2;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = x + 2\) là đường thẳng đi qua hai điểm \(A\) và \(B\).
b) Góc tạo bởi hai đường thẳng \(y = x\) và \(y = x + 2\) với trục \(Ox\) lần lượt là \({\alpha _1}\) và \({\alpha _2}\).
Dùng thước đo độ kiểm tra ta thấy số đo \({\alpha _1} = {\alpha _2} = 45^\circ \).
- Vẽ đồ thị hàm số \(y = x + 3\)
Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} = - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).
- Vẽ đồ thị hàm số \(y = - x + 3\)
Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).
Đồ thị hàm số \(y = - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).
Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).
Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).
Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).