Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
Bài 3:
H thuộc Δ nên H(x;4/5x+3/5)
\(\overrightarrow{AH}=\left(x+1;\dfrac{4}{5}x-\dfrac{12}{5}\right)\)
Δ: 4x-5y+3=0
=>VTPT là (4;-5)
=>VTCP là (5;4)
Theo đề, ta có: 5(x+1)+4(4/5x-12/5)=0
=>5x+5+16/5x-48/5=0
=>31/5x-23/5=0
=>x=23/31
=>y=4/5*23/31+3/5=37/31
a+9b=23/31+9*37/31=356/31
a.
\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp
Phương trình tham số AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(4;-7\right)\) \(\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)
Gọi d là đường thẳng bất kì qua B và H là hình chiếu vuông góc của A lên d
\(\Rightarrow d\left(A;d\right)=AH\)
Mà theo định lý đường xiên - đường vuông góc ta luôn có:
\(AH\le AB\Rightarrow AH_{max}=AB\) khi \(H\equiv B\) hay \(d\perp AB\)
\(\overrightarrow{AB}=\left(3;2\right)\Rightarrow d\) nhận \(\left(3;2\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-2\right)+2\left(y-4\right)=0\Leftrightarrow3x+2y-14=0\)