Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
P(x)+Q(x)=(5x3-+7x4+8x2)+(8x2-5x-3x3+x4)
= 5x3-7x4+8x2+8x2-5x-3x3+x4
=(5x3-3x3)+(-7x4+x4)+(8x2+8x2)-5x
=2x3-6x4+16x2-5x
P(x)-Q(x)=(5x3-+7x4+8x2)-(8x2-5x-3x3+x4)
= 5x3-+7x4+8x2-8x2+5x+3x3-x4
=(5x3+3x3)+(-7x4_x4)+(8x2-8x2)+5x
= 8x3-8x4+5x
*Cách 1: Hàng ngang:
P(x) - Q(x) = (5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\)) - (8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) - \(\dfrac{2}{3}\))
= 5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\) - 8x\(^2\) + 5x + 3x\(^3\) - x\(^4\) +\(\dfrac{2}{3}\)
= (5x\(^3\) + 3x\(^3\)) + (-\(\dfrac{1}{3}\) + \(\dfrac{2}{3}\)) + (7x\(^4\) - x\(^4\)) + (8x\(^2\) - 8x\(^2\)) + 5x
= 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x
Vậy P(x) - Q(x) = 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x
*Cách 2: Hàng dọc:
P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
-
Q(x) = x\(^4\) - 3x\(^3\) + 8x\(^2\) - 5x - \(\dfrac{2}{3}\)
Hay: P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
+
[-Q(x)] = -x\(^4\) + 3x\(^3\) - 8x\(^2\) + 5x + \(\dfrac{2}{3}\)
___________________________________________
P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)
Vậy P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)
\(P\left(0\right)=0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
\(=0-0+0-0-0=0\)
=> x = 0 là nghiệm của P (x) (1)
\(Q\left(x\right)=5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
\(=0-0+0-0-\frac{1}{4}\)
\(=\frac{1}{4}\)
=> x = 0 không phải là nghiệm của Q (x) (2)
Từ (1) và (2) => x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Thay x=0 vào đa thức P(x) ta được:
\(0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
=\(0-0+0-0-0=0\)
Vậy x=0 là nghiệm của đa thức P(x)
Thay x=0 vào đa thức Q(x) ta được:
\(5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
=\(\frac{1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x)
Nhớ tick cho mình nha!
1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)
\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)
\(=5x^4+2x^2+\dfrac{3}{16}\)
2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)
1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)
\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)
\(=-\frac{1}{2}x^2y^2\)
2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)
\(=\frac{17}{6}x^2\)
3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)
\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)
\(=-\frac{67}{4}x^2y^3\)
4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)
\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)
\(=-\frac{97}{30}x^4y\)
5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)
\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)
\(=-\frac{5}{12}x^6y^8\)
B(x) + C(x)=
( 12x4 + 6x3 - \(\frac{1}{2}\)X+ 3)+(-12x4 - 2x3 + 5x + \(\frac{1}{2}\))
=12x4 + 6x3 - \(\frac{1}{2}\)X+ 3-12x4 - 2x3 + 5x + \(\frac{1}{2}\)
=(12x4-12x4)+(6x3-2x3)+(-\(\frac{1}{2}\)+ \(\frac{1}{2}\))+3+5x
=4x3+3+5x
B(x) - C(x)=
( 12x4 + 6x3 - \(\frac{1}{2}\)X+ 3)-(-12x4 - 2x3 + 5x + \(\frac{1}{2}\))
=12x4 + 6x3 - \(\frac{1}{2}\)X+ 3+12x4 + 2x3 - 5x - \(\frac{1}{2}\)
=(12x4+12x4)+(6x3+2x3)+(-\(\frac{1}{2}\)- \(\frac{1}{2}\))+3-5x
=24x4+8x3-1+3-5x
=24x4+8x3+(-1+3)-5x
=24x4+8x3+2-5x
a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)
\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)
\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)
\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)
b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)
\(=3x^3-x^4+4-5x\)
Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)
Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)
\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)
\(=x^3+10x^2-5x^4+10-3x\)
Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)