K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

30 tháng 3 2017

P(x)+Q(x)=(5x3-+7x4+8x2)+(8x2-5x-3x3+x4)

= 5x3-7x4+8x2+8x2-5x-3x3+x4

=(5x3-3x3)+(-7x4+x4)+(8x2+8x2)-5x

=2x3-6x4+16x2-5x

P(x)-Q(x)=(5x3-+7x4+8x2)-(8x2-5x-3x3+x4)

= 5x3-+7x4+8x2-8x2+5x+3x3-x4

=(5x3+3x3)+(-7x4_x4)+(8x2-8x2)+5x

= 8x3-8x4+5x

31 tháng 3 2017

*Cách 1: Hàng ngang:

P(x) - Q(x) = (5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\)) - (8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) - \(\dfrac{2}{3}\))

= 5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\) - 8x\(^2\) + 5x + 3x\(^3\) - x\(^4\) +\(\dfrac{2}{3}\)

= (5x\(^3\) + 3x\(^3\)) + (-\(\dfrac{1}{3}\) + \(\dfrac{2}{3}\)) + (7x\(^4\) - x\(^4\)) + (8x\(^2\) - 8x\(^2\)) + 5x

= 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x

Vậy P(x) - Q(x) = 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x

*Cách 2: Hàng dọc:

P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)

-

Q(x) = x\(^4\) - 3x\(^3\) + 8x\(^2\) - 5x - \(\dfrac{2}{3}\)

Hay: P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)

+

[-Q(x)] = -x\(^4\) + 3x\(^3\) - 8x\(^2\) + 5x + \(\dfrac{2}{3}\)

___________________________________________

P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)

Vậy P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)

3 tháng 6 2020

\(P\left(0\right)=0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)

\(=0-0+0-0-0=0\)

=> x = 0 là nghiệm của P (x) (1)

\(Q\left(x\right)=5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)

\(=0-0+0-0-\frac{1}{4}\)

\(=\frac{1}{4}\)

=> x = 0 không phải là nghiệm của Q (x) (2)

Từ (1) và (2) => x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

6 tháng 6 2020

Thay x=0 vào đa thức P(x) ta được:

\(0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)

=\(0-0+0-0-0=0\)

Vậy x=0 là nghiệm của đa thức P(x)

Thay x=0 vào đa thức Q(x) ta được:

\(5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)

=\(\frac{1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x)

Nhớ tick cho mình nha!

1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)

\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)

\(=5x^4+2x^2+\dfrac{3}{16}\)

2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)

17 tháng 5 2020

Cảm ơn bn

17 tháng 5 2020

Thanks

7 tháng 5 2019

1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)

\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)

\(=-\frac{1}{2}x^2y^2\)

2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)

\(=\frac{17}{6}x^2\)

3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)

\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)

\(=-\frac{67}{4}x^2y^3\)

4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)

\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)

\(=-\frac{97}{30}x^4y\)

5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)

\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)

\(=-\frac{5}{12}x^6y^8\)

3 tháng 4 2019

B(x) + C(x)=

( 12x4 + 6x3 - \(\frac{1}{2}\)X+ 3)+(-12x4 - 2x3 + 5x + \(\frac{1}{2}\))

=12x4 + 6x3 - \(\frac{1}{2}\)X+ 3-12x4 - 2x3 + 5x + \(\frac{1}{2}\)

=(12x4-12x4)+(6x3-2x3)+(-\(\frac{1}{2}\)+ \(\frac{1}{2}\))+3+5x

=4x3+3+5x

B(x) - C(x)=

( 12x4 + 6x3 - \(\frac{1}{2}\)X+ 3)-(-12x4 - 2x3 + 5x + \(\frac{1}{2}\))

=12x4 + 6x3 - \(\frac{1}{2}\)X+ 3+12x4 + 2x3 - 5x - \(\frac{1}{2}\)

=(12x4+12x4)+(6x3+2x3)+(-\(\frac{1}{2}\)- \(\frac{1}{2}\))+3-5x

=24x4+8x3-1+3-5x

=24x4+8x3+(-1+3)-5x

=24x4+8x3+2-5x

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)