K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

a, P(x) + Q(x)=\(x^3-3x+x^2+1\)+\(2x^2-x^3+x-5\)

=\(\left(x^3-x^3\right)+\left(-3x+x\right)\)+\(\left(x^2+2x^2\right)+\left(1-5\right)\)=\(-2x+3x^2-4\)

P(x)-Q(x)=\(x^3-3x+x^2+1\)-\(2x^2+x^3-x+5\)=\(\left(x^3+x^3\right)+\left(-3x-x\right)\)+\(\left(x^2-2x^2\right)+\left(1+5\right)\)

=\(2x^3-4x-x^2+6\)

vậy P(x)+Q(x)=\(-2x+3x^2-4\)

      P(x)-Q(x)=\(2x^3-4x-x^2+6\)

20 tháng 4 2019

a) \(P\left(x\right)=x^3-3x+x^2+1\)

              \(=x^3+x^2-3x+1\)

\(Q\left(x\right)=2x^2-x^3+x-5\)

              \(-x^3+2x^2+x-5\)

                            \(P\left(x\right)=x^3+x^2-3x+1\)

     +

                     \(Q\left(x\right)=-x^3+2x^2+x-5\)

                ___________________________________

  \(P\left(x\right)+Q\left(x\right)=\)          \(3x^2-2x-4\)

Vậy P(x) + Q(x) = 3x^2 - 2x - 4

                       \(P\left(x\right)=x^3+x^2-3x+1\)

     -        

                 \(Q\left(x\right)=-x^3+2x^2+x-5\)

     ____________________________________________

\(P\left(x\right)-Q\left(x\right)=\)\(2x^3-1x^2-4x+6\)

Vậy P(x) - Q(x) = 2x^3 - 1x^2 - 4x + 6

      

23 tháng 4 2019

a, P(x) + Q(x) = 1x2 -2x - 4 

   P(x) - Q(x) = 2x- 3x- 4x + 6

b, Tự lm nhé mk chưa nghĩ ra

#Hk_tốt

#Ngọc's_Ken'z

21 tháng 4 2019

a. P(x)+Q(x)=(x3-3x-x2+1)+(2x2-x3+x-5)

                  =( x3-x3) +(-x2+2x2)+(-3x+x)+(1-5)

                  =    x2-2x-4         

    P(x)-Q(x)=(x3-3x-x2+1)-(2x2-x3+x-5)

                   = x3_3x-x2+1-2x2+x3+x+5

                  = ( x3+x3) +(-x2_2x2)+(-3x-x)+(1+5)

                  =  2x3_3x2-4x+6

20 tháng 4 2019

\(b,P\left(x\right)+Q\left(x\right)=x^3-3x-x^2+1+2x^2-x^3+x-5=0\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)

20 tháng 4 2019

Ví sao \(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\). Giải thích hộ mình với

8 tháng 5 2017

a) P(x)=5x- 3x - x + 7

Q(x)=-5x3- x+ 2x + 2x -3 - 2

b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x+ 2x + 2x - 3 - 2 )

                       =5x- 3x - x + 7 - 5x- x+ 2x + 2x - 3 - 2

                       =(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

           => M = -x2+2

P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)

               = 5x3-3x-x+7+5x3-x2+2x+2x-3-2

               =(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)

       => N =10x3 -x2 +2

c)-x2+2=0

-x2=0+2

-x2=2

=>-x2=\(-\sqrt{2}\)

10 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x = 5x3 + ( -3x - x ) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + ( 2x + 2x ) - x2 + ( -3 - 2 ) = -5x3 + 4x - x2 - 5

M(x) = P(x) + Q(x) 

= 5x3 - 4x + 7 + ( -5x3 + 4x - x2 - 5 )

= ( 5x3 - 5x3 ) + ( 4x - 4x ) - x2 + ( 7 - 5 )

= -x2 + 2

N(x) = P(x) - Q(x) 

= ( 5x3 - 4x + 7 ) - ( -5x3 + 4x - x2 - 5 )

= 5x3 - 4x + 7 + 5x3 - 4x + x2 + 5

= ( 5x3 + 5x3 ) + ( -4x - 4x ) + x2 + ( 7 + 5 )

= 10x3 - 8x + x2 + 12

M(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

             <=> x2 = 2

             <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của M(x) là \(\pm\sqrt{2}\)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

22 tháng 4 2019

P(x)+Q(x)=x3-3x-x2+1+2x2-x3+x-5

=x2-2x-4.

20 tháng 4 2019

a) \(P\left(x\right)+Q\left(x\right)=x^3-3x^2+x^2+1+2x^2-x^3+x-5\)

\(=x-4\)

\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+x^2+1-2x^2+x^3-x+5\)

\(=2x^3-4x^2-x+6\)

b) Ta có: \(P\left(x\right)+Q\left(x\right)=x-4=0\)

\(< =>x=4\)

Vậy nghiệm của P(x)+Q(x) là: x=4.

20 tháng 4 2019

a/P(x)+Q(x)=x3-3x+x2+1+2x2-x3+x-5=3x2-2x-4

P(x)-Q(x)=x3-3x+x2+1-2x2+x3-x+5=2x3-x2-4x+6

b/P(x)+Q(x)=3x2-2x-4 (a=3,b=-2=>b'=-2/2=-1,c=-4)

\(\Delta=\left(b'\right)^2-a.c=\left(-1\right)^2-3.\left(-4\right)=13\)

\(\chi_1=\frac{-b'+\sqrt{\Delta}}{a}=\frac{-\left(-1\right)+\sqrt{13}}{3}=\frac{1+\sqrt{13}}{3}\)

\(\chi_2=\frac{-b'-\sqrt{\Delta}}{a}=\frac{-\left(-1\right)-\sqrt{13}}{3}=\frac{1-\sqrt{13}}{3}\)