Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=x^2+4x+9-2x^3\)\(=-2x^3+x^2+4x+9\)
\(Q\left(x\right)=2x^3-3x+2x^2-9=2x^3+2x^2-3x-9\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(-2x^3+x^2+4x+9\right)+\left(2x^3+2x^2-3x-9\right)\)
\(=\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)
\(=3x^2+x\)
c) Ta có: \(M\left(x\right)=3x^2+x\)
\(\Rightarrow M\left(-\dfrac{1}{3}\right)=3.\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)=\dfrac{1}{3}+\left(-\dfrac{1}{3}\right)=0\)
Vậy \(x=-\dfrac{1}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)
g(x)=\(x^5-7x^4+4x^3-3x-9\)
f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)
=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))
=\(-14x^4+2x^3+x^2+x\)
a) Sắp xếp các đa thức theo lũy thừa giảm của biến :
\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)
b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)
=> h(x) = -14x4 + 2x3 + x2 +x
a: P(x)=-5x^3+6x^2+3x-1
Q(x)=-5x^3+6x^2+4x+2
b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2
=-10x^3+12x^2+7x+1
T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2
=-x-3
c: T(x)=0
=>-x-3=0
=>x=-3
d: G(x)=-(-10x^3+12x^2+7x+1)
=10x^3-12x^2-7x-1
GOOD ♥
(¯`♥´¯).NİGHT.♥
.`•.¸.•´(¯`♥´¯)..SWEET ♥
*****.`•.¸.•´(¯`♥´¯)..DREAMS ♥
***********.`•.¸.•´(¯`♥´¯)..♥
…***************.`•.¸.•´……♥ ♥
a : P(x)=\(5x^3+3x^2\)\(-2x\)\(-5\)
Q(x)=\(7x^3\)\(+3x^2\)\(-4x\)\(+4\)
b: P(x)+Q(x)=\(12x^3+6x^2-6x-1\)
P(x)-Q(x)= \(-2x^3+2x-9\)
\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)
\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)
\(P\left(x\right)=9x^2+3x-10-2x^3\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
Sắp giảm :
\(P\left(x\right)=-2x^3+9x^2+3x-10\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)\)= \(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)
\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)
\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)
\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\)
Q(x) \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)
b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\); \(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
a: P(x)=x^3-2x^2+3x-10
Q(x)=-x^3+4x^2-2x+9
b: P(x)+Q)(x)=2x^2+x-1
P(x)-Q(x)=2x^3-6x^2+5x-19
c: H(x)=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=-1; x=1/2