Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
A=x3/x2--4.x+2/x-x-4xx-4/xx-2
Điều kiện x \(\ne\)+-2
Ý b c tự làm
đkcđ: x khác 0 và -3
\(A=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x.\left(x-3\right)}\)
\(A=\frac{\left(x-3\right)^2}{x.\left(x-3\right)}-\frac{x^2}{x.\left(x-3\right)}+\frac{9}{x.\left(x-3\right)}\)
\(A=\frac{x^2-6x+9-x^2+9}{x.\left(x-3\right)}=\frac{-6x+18}{x.\left(x-3\right)}=\frac{-6.\left(x-3\right)}{x.\left(x-3\right)}=-\frac{6}{x}\)
để A thuộc Z => 6 chia hết cho x
=>....
\(Taco\)
\(ĐKXD:x\ne0;x\ne3\)
\(\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-6x+9}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}=\frac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\)
\(=\frac{18-6x}{x-3}\)
\(A\inℤ\Leftrightarrow18-6x⋮x-3\Leftrightarrow18-6x+6x-18⋮x-3\Leftrightarrow0⋮x-3\)
Vậy vs mọi GT của x thì A nguyên
a) ĐKXĐ của A : \(\hept{\begin{cases}2x-3\ne0\\2x+3\ne0\\9-4x^2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{3}{2}\\x\ne-\frac{3}{2}\end{cases}}}\)
=> Giá trị của biểu thức A được xác định khi x khác 3/2 và x khác -3/2
\(A=\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5}{2x-3}+\frac{2}{2x+3}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{5.\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2.\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x+3\right)\left(2x-3\right)}\)
..... chắc tôi làm sai oy !
\(ĐKXĐ:x\ne1\)
a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)
\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)
b) Thay \(x=-\frac{1}{2}\)vào A, ta được :
\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)
\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)
\(\Leftrightarrow A=-1\)
c) Để A < 1
\(\Leftrightarrow2x^2+1< x-1\)
\(\Leftrightarrow2x^2-x+2< 0\)
\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)
\(\Leftrightarrow x\in\varnothing\)
Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)
d) Để A có giá trị nguyên
\(\Leftrightarrow2x^2+1⋮x-1\)
\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)
\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)
\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)
\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên
=> \(x-5⋮\)x+5
Ta có x-5=(x+5)-10
Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)
mà x nguyên => x+5 nguyên
=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
ta có bảng
x+5 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -15 | -10 | -7 | -6 | -4 | -3 | 0 | 5 |
ĐCĐK | tm | tm | tm | tm | tm | tm | tm | ktm |
Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên