Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
Bài 1:
\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(x=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{1}{8}\sqrt{2}\)
\(\Leftrightarrow x+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{2}}{8}\right)^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow x^2+\frac{x\sqrt{2}}{4}-\frac{\sqrt{2}}{4}=0\)
\(\Leftrightarrow4x^2+x\sqrt{2}-\sqrt{2}=0\)(1)
\(\Leftrightarrow x\sqrt{2}=\sqrt{2}-4x^2\)
\(\Leftrightarrow x=1-2x^2\sqrt{2}\)
Thay vào M ta sẽ được
\(M=x^2+\sqrt{x^4+1-2x^2\sqrt{2}+1}\)
\(=x^2+\sqrt{\left(x^2-\sqrt{2}\right)^2}\)
\(=x^2+\left|x^2-\sqrt{2}\right|\)
Từ \(\left(1\right)\Rightarrow\sqrt{2}-x\sqrt{2}=4x^2\ge0\)
\(\Leftrightarrow\sqrt{2}\left(1-x\right)\ge0\)
\(\Leftrightarrow x\le1\)
\(\Leftrightarrow x^2\le1< \sqrt{2}\)
\(\Rightarrow\left|x^2-\sqrt{2}\right|=\sqrt{2}-x^2\)
Khi đó \(M=x^2+\left|x^2-\sqrt{2}\right|=x^2-\sqrt{2}+x^2=\sqrt{2}\)
|N|