K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

7 tháng 2 2018

Ta có \(f\left(x\right)=g\left(x\right)\left(x+3\right)+1=h\left(x\right)\left(x-4\right)+8=\left(x-3\right)\left(x+3\right)\left(x-4\right)+ax+e\)

Từ đó ta có : 

\(f\left(x\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)+a\left(x+3\right)+e-3a=\left(x-3\right)\left(x+3\right)\left(x-4\right)+a\left(x-4\right)+e+4a\)

\(f\left(x\right)=\left(x+3\right)\left[\left(x-3\right)\left(x-4\right)+a\right]+e-3a=\left(x-4\right)\left[\left(x-3\right)\left(x+3\right)+a\right]+e+4a\)

\(\Rightarrow\hept{\begin{cases}e-3a=1\\e+4a=8\end{cases}\Rightarrow\hept{\begin{cases}e=4\\a=1\end{cases}}}\)

Vậy nên \(f\left(x\right)=\left(x-3\right)\left(x+3\right)\left(x-4\right)+x+4\)

\(=x^3-4x^2-8x+40\Rightarrow\hept{\begin{cases}b=-4\\c=-8\\d=40\end{cases}}\)

20 tháng 12 2019

Rút gọn biểu thức:

3(2^2+1)(2^4+1)(2^8+1)(2^16+1)

16 tháng 3 2020

Theo định lý Bezout ta có:

\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)

Ta có:

\(f\left(1\right)=a+b+c+d+1=2\)

\(f\left(2\right)=8a+4b+2c+d+16=2\)

\(f\left(-3\right)=-27a+9b-3c+d+81=2\)

\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)

Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !

20 tháng 6 2017

Làm sao nhở!

7 tháng 2 2018

Em tham khảo bài tương tự tại đây nhé.

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

19 tháng 9 2015

F(x) = ( x + 3 )( x - 4 ).3x + ax + b 

F(-3) = 1 => -3a + b = 1 => b = 1 + 3a 

F(4) = 8 => 4a + b = 8 thay b = 1 + 3a 

=> 7a + 1 = 8 => a =  1 => b = 1 + 3 = 4 

=> f(x) = ( x + 3 )( x - 4 ).3x + x + 4 

đến đây chỉ việc nhân ra thôi 

22 tháng 10 2021

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

22 tháng 10 2021

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)

2 tháng 9 2020

Vì \(P\left(x\right)\)chia cho x+3 du 1 nên

\(P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow P\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1=1\left(1\right)\)

Vì P(x) chia cho x-4 dư 8 nên 

\(P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=8\left(2\right)\)

Vì P(x) chia cho (x+3)(x-4) được thương là 3x và còn dư 

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1), (2)và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=4\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được: \(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)