Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình
a) ∆OAD và ∆OCB có: OA= OC(gt)
∠O chung
OB = OD (gt)
OAD = OCB (c.g.c) AD = BC
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b)
Ta có ∠A1 = 1800 – ∠A2
∠C1 = 1800 – ∠C2
mµ ∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên)
⇒ ∠A1 = ∠C1
Ta có OB = OA + AB
OD = OC + CD mà OB = OD, OA = OC ⇒ AB = CD
Xét ΔEAB = ΔECD có:
∠A1 = ∠C1 (c/m trên)
AB = CD (c/m trên)
∠B1 = ∠D1 (ΔOCB = ΔOAD)
⇒ ΔEAB = ΔECD (g.c.g)
c) Xét ΔOBE và ΔODE có:
OB = OD (GT)
OE chung
AE = CE (ΔAEB = ΔCED) ⇒ΔOBE = ΔODE (c.c.c)
⇒ ∠AOE = ∠COE ⇒ OE là phân giác của góc ∠xOy.
cái đề dài thế này, chả biết khó hay ko nhưng mà ngại làm quá :[
hình như câu b cho đề sai, pải là: ∆EAB=∆ECD mới đúng
Xét tam giác OAD và tam giác OBC , có :
Góc O chung
OA = OB ( gt )
OD = OC ( gt )
Suy ra tam giác OAD = tam giác OBC ( c - g - c )
x O y A C B D K
a, OA = OB; AC = BD => OC = OD
Xét t/g OAD và t/g OBC có:
OA = OB (gt)
góc O chung
OC = OD (cmt)
=> t/g OAD = t/g OBD (c.g.c)
b,Vì t/g OAD = t/gOBD => góc ACK = góc BDK , góc CAK = góc DBK
Xét t/g KAC và t/g KBD có:
góc ACK = góc BDK (cmt)
AC = BD (gt)
góc CAK = góc DBK (cmt)
=> t/g KAC = t/g KBD (g.c.g)
=> AK = BK
Xét t/g OAK và t/g OBK có:
OA = OB (gt)
AK = BK (cmt)
OK chung
=> t/g OAK = t/g OBK (c.c.c)
=> góc AOK = góc BOK
=> OK là tia p/g của góc xOy