Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOBC có
OA=OB
góc O chung
OD=OC
Do đó: ΔOAD=ΔOBC
=>AD=BC
b: Xét ΔEAC và ΔEBD có
góc EAC=góc EBD
AC=BD
góc ECA=góc EDB
Do đó: ΔEAC=ΔEBD
a) Ta có: OD = OB + BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180
OBC+EBD=180
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
Không pt đúng ko
vẽ thêm tia OE hộ tớ với
c) VÌ \(\Delta AEC=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AE=EB\)
XÉT \(\Delta OEB\)VÀ\(\Delta OEA\)CÓ
\(OB=OA\left(GT\right)\)
\(\widehat{B_1}=\widehat{A_1}\left(CMT\right)\)
\(AE=EB\left(CMT\right)\)
=>\(\Delta OEB\)=\(\Delta OEA\)(C-G-C)
=>\(\widehat{BOE}=\widehat{AEO}\)
=> OE LÀ TIA PHÂN GIÁC CỦA \(\widehat{xOy}\)
a.OC=OA+AC
OD=OB+BD
mà OA=OB(gt);AC=BD(gt)
=>OC=OD
Xét tam giác OAD và tam giác OBC có:OA=OB(gt)
góc O chung
OD=OC(cmt)
=>tam giác OAD=tam giác OBC(c.g.c)=>AD=BC(hai cạnh tương ứng)(đpcm)
b.tam giác OAD=tam giác OBC(câu a)=>góc OAD=góc OBC(hai góc tương ứng)
góc ODA=góc OCB(hai góc tương ứng) hay góc BDE=góc ACE
góc OAD+góc DAC=180 độ (hai góc kề bù)
góc OBC+góc CBD=180 độ (hai góc kề bù)
=>góc DAC=góc CBD hay góc EAC=góc EBD
Xét tam giác EAC và tam giác EBD có:
Góc ACE=góc BDE(cmt)
AC=BD(gt)
góc EAC=góc EBD(cmt)
=>tam giác EAC=tam giác EBD(g.c.g)(đpcm)
c.tam giác EAC=tam giác EBD(câu b)=>EC=ED(hai cạnh tương ứng)
Xét tam giác OEC và tam giác OED có:
OC=OD(câu a)
EC=ED(cmt)
OE chung
=>tam giác OEC=tam giác OED(c.c.c)
=>góc EOC=góc EOD(hai góc tương ứng)=>OE là phân giác góc COD hay OE là phân giác góc xOy (đpcm)
Tự vẽ hình
Ta có:
AC=OA+OCAC=OA+OC
BD=OB+ODBD=OB+OD
mà AC=BDAC=BD (gt) , OA=OBOA=OB (gt)
⇒OC=OD⇒OC=OD
Xét △OAD△OAD và △OBC△OBC có
OA=OBOA=OB (gt)
ˆAOD=ˆBOCAOD^=BOC^ (đối đỉnh)
OD=OCOD=OC (cmt)
⇒△OAD=△OBC⇒△OAD=△OBC (c.g.c)
⇒AD=BC⇒AD=BC (hai cạnh tương ứng)
b)
Do △OAD=△OBC△OAD=△OBC (cmt)
⇒ˆODA=ˆOCB⇒ODA^=OCB^ (hai góc tương ứng)
và ˆOAD=ˆOBCOAD^=OBC^ (hai góc tương ứng)
Ta có:
ˆOAD+ˆCAE=1800OAD^+CAE^=1800
ˆOBC+ˆDBE=1800OBC^+DBE^=1800
mà ˆOAD=ˆOBCOAD^=OBC^ (cmt)
⇒ˆCAE=ˆDBE⇒CAE^=DBE^
Xét △EAC△EAC và △EBD△EBD có
ˆCAE=ˆDBECAE^=DBE^ (cmt)
AC=BDAC=BD (gt)
ˆACE=ˆEDBACE^=EDB^ (do ˆOCB=ˆODAOCB^=ODA^ -cmt)
⇒△EAC=△EBD⇒△EAC=△EBD (g.c.g)
c)
Xét △AOB△AOB có OA=OBOA=OB (gt)
⇒△AOB⇒△AOB cân tại OO
⇒ˆOBA=ˆOAB⇒OBA^=OAB^
Xét △COD△COD có OC=ODOC=OD (cmt)
⇒△COD⇒△COD cân tại OO
⇒ˆOCD=ˆODC⇒OCD^=ODC^
Ta có:
ˆAOB+ˆOBA+ˆOAB=1800AOB^+OBA^+OAB^=1800
ˆCOD+ˆOCD+ˆODC=1800COD^+OCD^+ODC^=1800
mà ˆOBA=ˆOABOBA^=OAB^(cmt), ˆOCD=ˆODCOCD^=ODC^ (cmt)
⇒ˆAOB+2ˆOBA=1800⇒AOB^+2OBA^=1800
ˆCOD+2ˆODC=1800COD^+2ODC^=1800
mà ˆAOB=ˆCODAOB^=COD^ (đối đỉnh)
⇒ˆOBA=ˆODC⇒OBA^=ODC^
mà chúng ở vị trí so le trong
⇒AB//CD