Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC OAM = GÓC OBM=90*
OM CHUNG LÀ CẠNH HUYỀN CHUNG
MA=MB
=>TAM GIÂC OAM = TA GIÁC OBM (CH GN)
=>OA=OB
=>TAM GIÁC OAB CÂN TẠI A
B, XÉT TAM GIÁC MAD VÀ TAM GIÁC MBE CÓ
GÓC A=GÓC B =90*
GÓC M CHUNG
AD=BE
=>TAM GIÁC MAD=MBE
=>MD=ME
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC A=GÓC B=90*
OM LÀ CẠNH HUYỀN CHUNG
GÓC O CHUNG]
=>TAM GIÁC OAM = TAM GIÁC OMB(CH-GN)
=>OA=OM(CẠNH TƯƠNG ỨNG)
=> TAM GIÁC OAB CÂN TẠI O
B,XÉT TAM GIÁC ADM VÀ TAM GIÁC MBE CÓ
GÓC A = GÓC B=90*
GÓC AMD= GÓC EMB
GÓC M CHUNG
=>TAM GIÁC ADM = TA GIÁC MEB(GCG)
=>MD=ME(đpcm)
a) Xét tam giác vuông AOM và tam giác vuông BƠM có:
Cạnh huyền AM chung
\(\widehat{AOM}=\widehat{BOM}\) (gt)
\(\Rightarrow\Delta AOM=\Delta BOM\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MA=MB;OA=AB\)hay tam giác OAB cân tại O.
b) Xét tam giác vuông AMD và tam giác vuông BME có:
AM = BM
\(\widehat{AMD}=\widehat{BME}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMD=\Delta BME\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow MD=ME\)
c) Ta thấy OA = OB; AD = BE nên OD = OE
Vậy thì \(\Delta ODI=\Delta OEI\left(c-g-c\right)\)
\(\Rightarrow\widehat{OID}=\widehat{OIE}\)
Chúng lại là hai góc kề bù nên \(\widehat{OID}=\widehat{OIE}=90^o\) hay MO vuông góc DE.
a, Xét △OAM vuông tại A và △OBM vuông tại B
Có: AOM = BOM (gt)
OM là cạnh chung
=> △OAM = △OBM (ch-gn)
=> AM = BM (2 cạnh tương ứng)
và OA = OB (2 cạnh tương ứng)
=> △OAB cân tại O
b, Xét △MAD vuông tại A và △MBE vuông tại B
Có: AM = MB (cmt)
AMD = BME (2 góc đối đỉnh)
=> △MAD = △MBE (cgv-gnk)
=> MD = ME (2 cạnh tương ứng)
c, Gọi OM ∩ DE = { I }
Ta có: OA + AD = OD và OB + BE = OE
Mà OA = OB (cmt) , AD = BE (△MAD = △MBE)
=> OD = OE
Xét △IOD và △IOE
Có: OD = OE (cmt)
DOI = EOI (gt)
OI là cạnh chung
=> △IOD = △IOE (c.g.c)
=> OID = OIE (2 góc tương ứng)
Mà OID + OIE = 180o (2 góc kề bù)
=> OID = OIE = 180o : 2 = 90o
=> OI ⊥ DE
Mà OM ∩ DE = { I }
=> OM ⊥ DE
Em tham khảo tại link dưới đây nhé.
Câu hỏi của trần thị thúy vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link dưới đây nhé.
Câu hỏi của trần thị thúy vân - Toán lớp 7 - Học toán với OnlineMath