K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAD và ΔOCB có

OA=OC

góc AOD chung

OD=OB

=>ΔOAD=ΔOCB

=>AD=CB

b: Xét ΔEAB và ΔECD có

góc EAB=góc ECD

AB=CD

góc EBA=góc EDC

=>ΔEAB=ΔECD

c: Xét ΔOAE và ΔOCE có

OA=OC

AE=CE
OE chung

=>ΔOAE=ΔOCE

=>góc AOE=góc COE

=>góc AOM=góc CON

Xét ΔCON và ΔAOM có

góc CON=góc AOM

CO=AO

góc OCN=góc OAM

=>ΔCON=ΔAOM

=>ON=OM

=>ΔENM can tại E

=>EM=EN

=>NC=MA

Xét ΔEMB và ΔEND có

EM=EN

góc MEB=góc NED

EB=ED

=>ΔEMB=ΔEND

=>ND=MB và góc EMB=góc END

=>góc KMO=góc KNO

=>ΔKMN cân tại K

KD+DN=KN

KB+BM=KM

mà KM=KN; DN=BM

nên KD=KB

=>K nằm trên trung trực của DB(1)

OB=OD

nên O nằm trên trung trực của DB(2)

EB=ED

nên E nằm trên trung trực của DB(3)

Từ (1), (2), (3) suy ra O,E,K thẳng hàng

a: Xet ΔOAD và ΔOCB có

OA=OC

góc O chung

OD=OB

=>ΔOAD=ΔOCB

=>AD=CB

b: Xét ΔEAB và ΔECD có

góc EAB=góc ECD

AB=CD

góc EBA=góc EDC

=>ΔEAB=ΔECD

16 tháng 2 2023

ý c đâu ạ

https://hoc24.vn/cau-hoi/cho-goc-nhon-xoy-lay-diem-ab-thuoc-tia-ox-sao-cho-oa-ob-lay-diem-cd-thuoc-tia-oy-sao-cho-oaob-lay-diem-c-d-thuoc-tia-oy-sao-cho-ocoa-od.7621651044223

có ng trả lời cho bn rùi mà

17 tháng 2 2023

nhưng thiếc ý c

16 tháng 7 2021

Xét tam giác AOE và tam giác BOE 

có: AOE=BOE ( BE là tia P.g) 

     OE chung 

      OA=OB ( gt ) 

=> tam giác AOE=BOE (c-g-c)

b) Vì tam giác AOE=BOE (cma) => AE=EB ( 2 cạnh tương ứng ) 

Xét tam giác AEK và BEO có:

OE=EK  (gt) 

AEK=BEO ( đối đỉnh ) 

AE=EB ( cmt ) 

=> Tam giác AEK =BEO (c-g-c)

=> AK=OB ( 2 cạnh tương ứng )

c) Từ tam giác AEK= BEO (cmb) => AKE = BOE ( 2 góc tương ứng ) hay MKE=NOE 

Xét tam giác MKE và NOE có : 

MKE=NOE ( cmt) 

MK=ON ( AK=OB ; M , N là trung điểm mỗi đg ) 

EK=OE (gt)

=> Tam giác MKE = MOE (c-g-c)

=> EM=EN ( 2 cạnh tương ứng ) 

 

16 tháng 3 2016

khôn hey! lên đây xin trợ giúp ak? bạn làm đc gần hết rồi nhưng mà tịt!

13 tháng 12 2021

a: Xét ΔOAI và ΔOBI có 

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOAI=ΔOBI

13 tháng 12 2021

\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OI\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\\ b,\text{Gọi }AB\cap OI=\left\{H\right\}\\ \left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOH=\Delta BOH\left(c.g.c\right)\\ \Rightarrow\widehat{AHO}=\widehat{BHO}\\ \text{Mà }\widehat{AHO}+\widehat{BHO}=180^0\\ \Rightarrow\widehat{AHO}=\widehat{BHO}=90^0\\ \Rightarrow OI\bot AB\)