K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

Gọi h(x) là thương trong phép chia f(x) cho g(x)

Vì f(x) bậc 3, g(x) bậc 2 => h(x) bậc nhất

=> h(x) có dạng cx + d

f(x) ⋮ g(x) <=> f(x) = g(x).h(x)

<=> x3 + ax2 + 2x + b = ( x2 + x + 1 )( cx + d )

<=> x3 + ax2 + 2x + b = cx3 + dx2 + cx2 + dx + cx + d

<=> x3 + ax2 + 2x + b = cx3 + ( d + c )x2 + ( d + c )x + d

Đồng nhất hệ số ta có :

\(\hept{\begin{cases}c=1\\d+c=a=2\\d=b\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=c=d=1\end{cases}}\)

Vậy a = 2 , b = 1

28 tháng 1 2021

Vì \(f \left(x\right)⋮g\left(x\right)\)\(\Rightarrow\)\(f\left(x\right)=g\left(x\right).Q\left(x\right)\)     

Đặt \(Q\left(x\right)=cx+d\)          \(\left(c,d\ne0\right)\)

\(\Rightarrow\)\(f\left(x\right)=\left(x^2+x+1\right).\left(cx+d\right)\)

\(\Leftrightarrow\)\(f\left(x\right)=cx^3+dx^2+cx^2+dx+cx+d\)

\(\Leftrightarrow\)\(x^3+ax^2+2x+b=cx^3+\left(d+c\right)x+\left(d+c\right)x+d\)

Đồng nhất hệ số, ta có:

      \(c=1\)                                             \(a=2\)

      \(d+c=a\)              \(\Leftrightarrow\)           \(b=1\)

      \(d+c=2\)                                    \(c=1\)\(\left(TM\right)\)

      \(d=b\)                                             \(d=1\)\(\left(TM\right)\)

Vậy \(f \left(x\right)⋮g\left(x\right)\)khi  \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)

4 tháng 11 2019

Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12

Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)

\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)

Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)

\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)

Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)

\(\Rightarrow b=-2+3.2=4\)

Vậy a= -3; b = 4

4 tháng 11 2019

x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)

Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9

DD
9 tháng 12 2021

Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được: 

\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)

Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì: 

\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).

28 tháng 7 2016

Đa thức bị chia có bậc là 3

Đa thức chia có bậc là 2

=>Hạng tử sẽ có bậc là 1

Gọi thương có dạng là x+c

Ta có :\(x^3\)+\(ax^2\)+\(2x\)\(b\)=(x^2+x+1)(x+c)

=x^3+(c+1)x^2+x(c+1)+c

Từ đó để f(x):g(x)=>c+1=a

c+1=2

b=c

=>a=2

b=1

28 tháng 6 2018

Do bậc của đa thức bị chia f( x) là : 3 . Bậc của đa thức chia g(x) là : 2 . Nên bậc của đa thức thương là : 1 . Và có dạng : x + m

Vì phép chia là phép chia hết , ta có :

\(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+m\right)\)

\(x^3+ax^2+2x+b=x^3+mx^2+x^2+mx+x+m\)

\(x^3+ax^2+2x+b=x^3+x^2\left(m+1\right)+x\left(m+1\right)+m\)

Đồng nhất hệ số , ta được :

+) m + 1 = 2 ⇔ m = 1

+) m + 1 = a = 2

+) m = b = 1

Vậy ,..............