K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

\(f'\left(x\right)=x^2+x+1\) luôn lớn hơn 0 mà :3 vậy f'(x) \(\le\)0 là k có :3

15 tháng 2 2017

f'(x)= tính thế nào? hay là tính sai

nếu đúng vậy chọn PA (A) rỗng

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(f'\left(x\right)=x^2-2x-3\)

\(f'\left(x\right)\le0\\ \Rightarrow x^2-2x-3\le0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)\le0\\ \Leftrightarrow-1\le x\le3\)

NV
7 tháng 6 2020

\(C'=0\) với mọi hằng số C

nguyen thi khanh nguyen

NV
7 tháng 6 2020

\(f'\left(x\right)=6x^2-2x\)

\(g'\left(x\right)=3x^2+x\)

\(f'\left(x\right)>g'\left(x\right)\Leftrightarrow6x^2-2x>3x^2+x\)

\(\Leftrightarrow3x^2-3x>0\Rightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

Ta có: 

\(f'\left(x\right)=6x^2-2x\\ g'\left(x\right)=3x^2+x\)

Theo đề bài, ta có: 

\(f'\left(x\right)>g'\left(x\right)\\ \Leftrightarrow6x^2-2x>3x^2+x\\ \Leftrightarrow3x^2-3x>0\\ \Leftrightarrow3x\left(x-1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(\left(-\infty;0\right)\cup\left(1;+\infty\right)\)

Chọn D.