K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2021

\(f\left(3\right)=\dfrac{3}{2}\) ; \(f\left(\dfrac{3}{2}\right)=\dfrac{6}{5}\) ; \(f'\left(x\right)=\dfrac{1}{\left(x+1\right)^2}\Rightarrow f'\left(3\right)=\dfrac{1}{10}\) ; \(f'\left(\dfrac{3}{2}\right)=\dfrac{4}{25}\)

\(g\left(3\right)=f\left(f\left(3\right)\right)=f\left(\dfrac{3}{2}\right)=\dfrac{6}{5}\)

\(g'\left(x\right)=f'\left(f\left(x\right)\right).f'\left(x\right)\Rightarrow g'\left(3\right)=f'\left(f\left(3\right)\right).f'\left(3\right)=f'\left(\dfrac{3}{2}\right).\dfrac{1}{10}=\dfrac{2}{125}\)

Tiếp tuyến:

\(y=\dfrac{2}{125}\left(x-3\right)+\dfrac{6}{5}\)

Hoặc đơn giản nhất là tìm thẳng hàm g(x) ra \(g\left(x\right)=\dfrac{2\left(\dfrac{2x}{x+1}\right)}{\dfrac{2x}{x+1}+1}\) rút gọn rồi viết pttt

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Lời giải:

Từ $f(1+3x)=2x-f(1-2x)$ thay $x=0$ suy ra $f(1)=1$

$f(1+3x)=2x-f(1-2x)$

$\Rightarrow f'(1+3x)=(2x)'-f'(1-2x)$

$\Leftrightarrow 3f'(1+3x)=2+2f'(1-2x)$. Thay $x=0$ suy ra $f'(1)=2$

PTTT của $f(x)$ tại điểm $x=1$ là:

$y=f'(1)(x-1)+f(1)=2(x-1)+1=2x-1$

9 tháng 4 2023

cho em hỏi là sao lại thay x=0 mà không phải số khác ạ?

5 tháng 5 2023

I. Hàm số xác định trên D = R.

+) \(\lim\limits f\left(x\right)_{x\rightarrow1}=\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\)

                        \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)}\) 

                        \(=\lim\limits_{x\rightarrow1}\left(x-2\right)\)

                        \(=-1\)

+) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left(1-2x\right)=-1\)

=> Hàm số liên tục tại x0 = 1

II. Gọi phương trình tiếp tuyến tại N(x0; y0) là:

y = y'(x0)(x - x0) + y0

y = -x3 - x2 - 6x + 1 

=> y' = -3x2 - 2x + 6 

Vì tiếp tuyến song song với đường thẳng y = -6x + 17 => y'(x0) = 6

<=> -3x2 - 2x + 6 = 6

<=> -3x2 - 2x = 0

<=> -x(3x + 2) = 0

<=> x = 0 hoặc x = -2/3

Trường hợp 1: x0 = 0 => y0 = 0

=> y'(x0) = 6

=> Phương trình tiếp tuyến: y = 6(x - 0) + 1

                                      <=> y = 6x + 1

Trường hợp 2: x0 = -2/3 => y0 = 37/9

=> y'(x0) = 9

=> Phương trình tiếp tuyến: y = 9(x + 2/3) + 37/9

                                      <=> y = 9x + 91/9

27 tháng 4 2022

có:

+) đạo hàm của f(x) = f'(x) = 3x2 

+) phương trình tiếp tuyến là : y= f'(x).(x-x0) + f(x0

=> y = 3x2.(x-1) + 13 + 3 = 3x3 - 3x2 + 4 

 

 

27 tháng 4 2022

=-=-=--=-=-=--0-=-09876543w3er567890-=-0987654e3wq

f'(x)=y'=-3x^2+2x

f'(2)=-3*2^2+2*2=-3*4+4=-8

f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5

y=f(2)+f'(2)(x-2)

=-5+(-8)(x-2)

=-8x+16-5

=-8x+11

NV
9 tháng 4 2021

Điểm có hoành độ bằng tung độ \(\Rightarrow x=\sqrt{2x^2-4}\) (\(x\ge0\))

\(\Leftrightarrow x^2=2x^2-4\Rightarrow x=2\)

Tọa độ tiếp điểm: \(\left(2;2\right)\)

\(f'\left(x\right)=\dfrac{2x}{\sqrt{2x^2-4}}\Rightarrow f'\left(2\right)=2\)

Tiếp tuyến: \(y=2\left(x-2\right)+2\Leftrightarrow y=2x-2\)

16 tháng 5 2021

\(f'\left(x\right)=3x^2-6x+1\Rightarrow f'\left(1\right)=-2\)

Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là:

\(\Delta:y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\Rightarrow y=\left(-2\right)\left(x-1\right)-2\)

17 tháng 5 2021

Ta có y'=3x^2 - 6x +1 

gọi M(x0;y0) là tiếp điểm

Ta có x0 =1 do đó yo =1^3 -3.1^2+1-1=-2

y'(1)=3.1^2-6.1+1=-2

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'(1)(x-1)+(-2)=>y=-2x