Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1
Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)
2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)
Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)
3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)
Tìm GTLN của \(A=\frac{1}{x^3}+\frac{1}{y^3}\)
4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.
Cmr: \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)
ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay
\(f\left(2011\right)=f\left(f\left(2001\right)\right)=2001+10=2011\)
Vậy \(f\left(2011\right)=2011\)
Ta có: \(f\left(x\right)=x^2+px+q\)
\(\Rightarrow f\left(f\left(x\right)+x\right)=\left(f\left(x\right)+x\right)^2+p\left(f\left(x\right)+x\right)+q\)
\(=f\left(x\right)^2+2f\left(x\right).x+x^2+p.f\left(x\right)+p.x+q\)
\(=f\left(x\right)^2+2f\left(x\right).x+p.f\left(x\right)+\left(x^2+p.x+q\right)\)
\(=f\left(x\right)^2+2f\left(x\right).x+p.f\left(x\right)+f\left(x\right)\)
\(=f\left(x\right).\left(f\left(x\right)+2x+p+1\right)=f\left(x\right).\left(x^2+px+q+2x+p+1\right)\)
\(=f\left(x\right).\left(\left(x+1\right)^2+\left(x+1\right)p+q\right)=f\left(x\right).f\left(x+1\right)\)
Vậy tồn tại số nguyên k để f(k) = f(2008).f(2009) ( Chọn x = 2018 thì \(k=f\left(2018\right)+2018\))
f(k)=k
<=> k2-3k-5=k
<=> k2-3k-5-k=0
<=> k2-4k-5=0
<=> k2-4k-4-1=0
<=> (k-2)2=1
<=> k-2=1 hoặc k-2=-1
<=> k=3 hoặc k=1
đa thức bậc 4 đó có dạng X^4 + aX^3 + bX^2 + cX
f'(1)=5 => 1+ a+b+c=5
f(2)=11 => 16 + 8a + 4b +2c =11
f(3)=21 => 81 + 27a + 9b +3c =21
giải 3 phương trình trên => a= -11/2 ; b = 10 ; c= -1/2
vậy đa thức : X^4 -11/2 x^3 +10x^2 -1/2x
f(1)=5=>a+b+c=5
f(2)=11=>8a+4b+c=-5
f(3)=21=>27a+9b+c=-60
lập bảng =>a,b,c
nhớ k cho mk,mk cảm ơn
Từ giả thiết suy ra:
\(3f\left(2\right)+2.2.f\left(\frac{1}{2}\right)=13\Rightarrow3.f\left(2\right)+4.f\left(\frac{1}{2}\right)=13\) (1)
\(3f\left(\frac{1}{2}\right)+2.\frac{1}{2}.f\left(2\right)=\frac{5}{4}-7\Rightarrow3.f\left(\frac{1}{2}\right)+f\left(2\right)=-\frac{23}{4}\) (2)
Nhân cả vế của của (1) với 3 ta được 9.f(2) + 12.f(1/2) = 39
Nhân cả 2 vế của (2) với 4 ta được 4.f(2) + 12.f(1/2) = -23
Trừ từng vế hai đẳng thức trên ta được: 5.f(2) = 62 => f(2) = 62/5