Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(3\left(\frac{ab+bc+ca}{a+b+c}\right)^2\le3\left[\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}\right]^2\)\(=3\left(\frac{a+b+c}{3}\right)^2=\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)(1)
Mặt khác:\(\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2\ge2.\frac{ab}{c}.\frac{bc}{a}=2b^2\)(2)
Tương tự ta cũng có:\(\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge2c^2\)(3);\(\left(\frac{ca}{b}\right)^2+\left(\frac{ab}{c}\right)^2\ge2a^2\)(4)
Cộng theo vế (1),(2),(3) ta được:\(2\left[\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\right]\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\left(\frac{ab}{c}\right)^2+\left(\frac{bc}{a}\right)^2+\left(\frac{ca}{b}\right)^2\ge a^2+b^2+c^2\)(5)
Từ (1) và (5) suy ra điều phải chứng minh.Dấu "=" xảy ra khi \(a=b=c\)
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
Ta có: \(abc=1\Leftrightarrow\hept{\begin{cases}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ca=\frac{1}{b}\end{cases}}\)
\(abc=1\Leftrightarrow\sqrt[3]{abc}=1\)
Áp dụng BĐT AM-GM ta có:\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\Leftrightarrow a+b+c\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge4\left(a+b+c-1\right)\)
\(\Leftrightarrow\)\(a^2b+ab^2+a^2c+ac^2+b^2c+cb^2+2abc+4\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a}{c}+\frac{b}{c}+\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+6\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a+b}{c}+\frac{a+c}{b}+\frac{b+c}{a}+6\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a+b+c}{c}+\frac{a+c+b}{b}+\frac{a+b+c}{a}+3\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\ge4\left(a+b+c\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{a+b+c}\ge4\)(1)
Ta chứng mĩnh BĐT phụ
Với a,b,c > thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Thật vậy.
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{a+b+c}\ge\frac{9}{a+b+c}+\frac{3}{a+b+c}=\frac{12}{3}=4\)(2)
Từ (1) và (2)
=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge4\left(a+b+c-1\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Bạn ơi, tại sao \(\frac{9}{a+b+c}+\frac{3}{a+b+c}=\frac{12}{3}\) được hả bạn?
Bài 6
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
Bài 5 :
\(a,16x^2-\left(4x-5\right)^2=15\)
\(16x^2-16x^2+40x-25-15=0\)
\(40x-40=0\)
\(40x=40\)
\(x=1\)
\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(4x^2+12x+9-4x^2+4=49\)
\(12x=36\)
\(x=3\)
\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(4x^2-1+1-4x+4x^2=18\)
\(8x^2-4x-18=0\)
\(2\left(4x^2-2x-9\right)=0\)
\(x=\frac{1-\sqrt{37}}{4}\)
\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(12x=4\)
\(x=\frac{1}{3}\)
Làm đại luôn mặc dù chưa xong xD. Có sai sót gì cho xin lỗi nha!
Đặt: \(M=\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\)
\(M=\frac{\frac{1}{\left(b+c\right)^2}}{\frac{1}{a^2+bc}}+\frac{\frac{1}{\left(c+a\right)^2}}{\frac{1}{b^2+ca}}+\frac{\frac{1}{\left(a+b\right)^2}}{\frac{1}{c^2+ab}}\)
Áp dụng Bđt AM-GM dạng Engel:
\(M\ge\frac{\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2}{\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}}\)
Chuẩn hóa: \(a+b+c=3\)
Có: \(A=\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2\ge\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\left(\frac{3}{2}\right)^2\)
CM:\(B=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{3}{2}\)so what ? Tới đây k biết làm.