K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔAHM nội tiếp

AH là đường kính

Do đó: ΔAHM vuông tại M

=>HM\(\perp\)AC tại M

Xét (O) có

ΔADH nội tiếp

AH là đường kính

Do đó:ΔADH vuông tại D

=>HD\(\perp\)AB tại D

Xét ΔHAB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HM là đường cao

nên \(AM\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AM\cdot AC\)

=>AD/AC=AM/AB

Xét ΔAMD và ΔABC có

AM/AB=AD/AC
góc MAD chung

Do đó: ΔAMD đồng dạng với ΔABC

=>\(\widehat{AMD}=\widehat{ABC}\)

mà \(\widehat{AMD}+\widehat{DMC}=180^0\)(hai góc kề bù)

nên \(\widehat{DMC}+\widehat{DBC}=180^0\)

=>DMCB là tứ giác nội tiếp

2 tháng 3 2019

bn làm đc câu nào rồi

4 tháng 3 2019

làm được xong ý c rồi còn ý d nữa bn làm dc ko giúp mik vs

a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ

=>CE vuông góc AB, BD vuông góc AC

góc AEH=góc ADH=90 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

b: Gọi giao của AH với BC là N

=>AH vuông góc BC tại N

góc IEO=góc IEH+góc OEH

=góc IHE+góc OCE

=90 độ-góc OCE+góc OCE=90 độ

=>IE là tiếp tuyến của (O)