Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có: IN=IM;AI=IC(gt)
suy ra ANCM là hình bình hành
mà ACvuông với MN tại I suy ra ANCM là hình thoi
b, ta có góc INB+NBI=90°(1)
góc DBC+BCD=90°(2)
mà góc BCD=IAN(ANCM là hình thoi)
và góc IAN=INB(cùng phụ với NBA)
suy ra góc INB=BCD(3)
từ 1,2,3 suy ra góc NBI=DBC
suy ra N,B,D thẳng hàng(đpcm)
c, ta có góc IND=ICD(cmt)
suy ra INCD nội tiếp( hai góc bằng nhau cùng chắn cung ID)(đpcm)
d, ta có góc BDO' +O'DC=90°(1)
mà góc O'DC=O'CD(tam giác DCO' cân tại O')
mà góc NCI=ICD(ANCD là hình thoi)
suy ra góc NCI=O'DC
mà góc NCI=NDI( NCDI nội tiếp)
suy ra góc NDI=O'DC(2)
từ 1,2 suy ra NDI+BDO'=90°
suy ra ID là tiếp tuyến của (O')(đpcm)
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .