K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

a, Tính được sđ  B E ⏜ = 50 0

b, Chứng minh được sđ  C B E ⏜ = 180 0

=> C, O, E thẳng hàng (ĐPCM)

5 tháng 2 2021

Tự vẽ hình

a) Do \(CD\) vuông góc \(AB\) nên \(AB\) là trung trực của \(CD\) (liên hệ giữa đường kính và dây cung)

\(\Rightarrow AC=AD\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}\)

Mà \(sđ\stackrel\frown{AC}=\stackrel\frown{AOC}=50^0\Rightarrow sđ\stackrel\frown{AD}=50^0\).

Do \(DE\) song song \(AB\)

\(sđ\stackrel\frown{BE}=sđ\stackrel\frown{AD}=50^0\Rightarrow\widehat{BOE}=sđ\stackrel\frown{BE}=50^0\).

b) Do \(B\in\stackrel\frown{CE}\Rightarrow sđ\stackrel\frown{CBE}=sđ\stackrel\frown{CB}+sđ\stackrel\frown{BE}\)

\(\Rightarrow sđ\stackrel\frown{CBE}=\widehat{COB}+\widehat{BOE}=180^0-\widehat{AOC}+\widehat{BOE}\)

\(\Rightarrow sđ\stackrel\frown{CBE}=180^0-50^0+50^0=180^0\)

\(\Rightarrow\) CE là đường kính

\(\Rightarrow\) C, O, E thẳng hàng.

a) Ta có: AB//DE(gt)

CD⊥AB(gt)

Do đó: DE⊥CD(Định lí 2 từ vuông góc tới song song)

\(\widehat{CDE}=90^0\)

Xét ΔCDE có \(\widehat{CDE}=90^0\)(cmt)

nên ΔCDE vuông tại D(Định nghĩa tam giác vuông)

⇔D nằm trên đường tròn đường kính CE

⇔C,D,E nằm trên đường tròn đường kính CE

mà C,D,E cùng nằm trên (O)(gt)

nên CE là đường kính của (O)

hay C,O,E thẳng hàng(đpcm)

22 tháng 2 2021

Câu a tính số đoa cứng nhỏ BE mà bạn 

16 tháng 4 2020

a) Ta có \(\widehat{AND}=\widehat{AMD}\)(góc nội tiếp cùng chắn cung AD)

\(AM//BN\Rightarrow\widehat{AMN}=\widehat{MNB}\left(slt\right)\)

Ta có góc ANB nội tiếp đường trong O chắn nửa đường trong => góc ANB=900

Ta có: \(\widehat{AMD}+\widehat{AMN}+\widehat{DNM}=\widehat{DNM}+\widehat{AND}+\widehat{MNB}\)

\(\Leftrightarrow\widehat{DMN}+\widehat{MND}=90^0\Leftrightarrow\widehat{NDM}=90^0\)

Vì DM//AB và ND vuông góc với DM => DN vuông góc với AB

b) Ta có \(\widehat{BAN}=\widehat{BMN}\)(cùng chắn cung BN)

Mà \(\widehat{AMN}+\widehat{NMB}=90^0\Rightarrow\widehat{BAN}+\widehat{BAM}=90^0\Rightarrow\widehat{MAN}=90^0\)

\(\Rightarrow MANB\)là hcn

=> AM=BN

Ta có MC//AE và AM//EC => AMCE là hbh => AM=EC mà AM=BN => BN=EC mà BN//EC => ENBC là hbh =>EN//CB => CB vuông góc với AB(vì AB vuông góc với EN)=> BC là tiếp tuyến của đường tròn O
Chúc bạn học tốt!!!