Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk tóm tắt các bc nhé:
a) -Xét tamgiac HAC có góc DAC+ góc ACF= 90'(1)
- góc ANF=1/2 cung AD; góc DAC=1/2 cung BD ( sđ góc nt ..=1/2..)
- góc DAC+ góc ANF= 1/2(cug AD+cug BD)=1/2*180=90'(2)
từ (1) (2)<=> ACF=ANF
b) xét tứ giác AFCN có góc ACF=ANF(cm ở a) <=> AFCN nt đg tròn( dấu hiệu nhận bt t4 của đg tròn nt)
c)xét twgiac AFCN nt đg tròn(cm ở b) có NAF+NCF=180'(3) ; AFC+ANC=180'(4)
ta có: AFC+CFE=180'(5) (2 góc kề bù)
từ (4) (5)=> ANC=CFE
xét tamgiac NAE và FCE có góc CEF: chung ; ANC=CFE(cmt)=> tamgiac NAE =tamgiac FCE
=> góc FCE=NAF(2 góc tg uwg)(6)
từ (3) (6)=> góc NCF+FCE=180'
=> N,C, E thg hàng
mk tóm tắt thôi đấy nếu bn làm thì trình bày đầy đủ hơn
ta lại có:góc
4]
tg DEC ~ tg DCB
=> EC/BC = DC/DB
=> EC = BC.DC/DB
=> AC.EC = AC.BC.DC/DB = 2S(ACB).DC/DB
Cần c/m AF.CH = AC.EC
<=> AF.CH = 2S(ACB).DC/DB
<=> AE.DB = 2S(ACB).DC/CH (*)
Mà 2S(ACB)/CH = AB
=> (*) <=> AE.DB = AB.DC = AB.DA
Mà AE.DB = 2S(ADB); AB.DA = 2S(ADB)
Vậy: AF.CH = AC.EC
5]
Ta đi c/m KA=KD để suy ra KE là tiếp tuyến.
AE kéo dài CH tại M
=> AK/CM = KI/IC
=> KD/CH = KI/IC
=> AK/CM = KD/CH (*)
DP cắt CH tại P; BC cắt AD tại J
=> HP/AD = BP/BD = CP/DJ (**)
Tam giác ACJ vuông tại C, AD=AD => DC là trung tuyến => AD=DJ
Từ (**) => HP=PC
Xét 2 tg vuông AMH và HBP, ta có ^AMH = ^HBP (cạnh tương ứng vuông góc)
=> tg AMH ~ HBP
=> MH/AH = HB/PH
=> MH = AH.HB/PH = AH.HB/(CH/2) = 2AH.HB/CH (***)
Do CH^2 = AH.HB => AH.HB/CH = CH
Từ (***) => MH = 2CH => CM =CH
Từ (*) => AK =KD
=> KE là trung tuyến tg vuông ADE => ka=ke
=> tg OKA = tg OKE (do OA=OE, OK chung; AK=KD)
=> ^KEO = ^KAO = 90
=> KE là tiếp tuyến của (O)
A B C D M N O I K P Q H S R L T E G
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).