Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (o) có :
Tiếp tuyến AB (o) => góc OBA =90(theo tính chất tiếp tuyến của đường tròn)
Tiếp tuyến AC(O)=> góc OCA =90 (theo trên)
xét tứ giác ABOC có:
góc OBA+góc OCA =180 (cmt)
=> tứ giác ABOC là tứ giác nt (dhnb)
Mặt khác : MH vuông góc với BC (theo đề bài )=>góc BHM =90
MI vuông góc với AB (theo đề bài )=>góc BIM = 90
Xét tứ giác BIMH có:
góc BHM+BIM=180 (cmt)
=>tứ giác BIMH là tứ giác nt
2) theo hệ thức lượng áp dụng vào tam giác HIK ta có :
MH^2=MI . MK
3)
CM góc thì mình không biết đâu nhé!
a)Vì `MI bot BC`
`=>hat{MIC}=90^o`
`HM bot HC`
`=>hat{MHC}=90^o`
`=>hat{MHC}+hat{MIC}=180^o`
`=>` tg HMIC nt
b)Vì HMIC nt
`=>hat{HCM}=hat{MIH}`
Mà `hat{HCM}=hat{MBC}`(góc nt và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung MC nhỏ)
`=>hat{MIH}=hat{MCB}`
Đoạn còn lại thì mình không biết điểm F ở đâu ker
A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^
a, Vì CM là tiếp tuyến của (A)
=> \(CM\perp AM\)
=> ^CMA = 90o
=> M thuộc đường tròn đường kính AC
Vì ^CHA = 90o
=> H thuộc đường tròn đường kính AC
Do đó : M và H cùng thuộc đường tròn đường kính AC
hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC
b, Vì AM = AH ( Bán kính)
CM = CH (tiếp tuyến)
=> AC là trung trực MH
=> \(AC\perp MH\)tại I
Xét \(\Delta\)AMC vuông tại M có MI là đường cao
\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)
c, Vì CM , CH là tiếp tuyến của (A)
=> AC là phân giác ^HAM
=> ^HAC = ^MAC
Mà ^HAC + ^HAB = 90o
=> ^MAC + ^HAB = 90o
Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)
=> ^BAD + 90o + ^CAM = 180o
=> ^BAD + ^CAM = 90o
Do đó ^BAD = ^BAH (Cùng phụ ^CAM)
Xét \(\Delta\)BAD và \(\Delta\)BAH có:
AB chung
^BAD = ^BAH (cmt)
AD = AH (Bán kính (A) )
=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)
=> ^ADB = ^AHB = 90o
\(\Rightarrow BD\perp AD\)
=> BD là tiếp tuyến của (A)
Làm đc đến đây thôi :(