K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

undefined

a) Chứng minh tứ giác MAOB nội tiếp đường tròn
Xét tứ giác MAOB có: \(\widehat{MAO}=90\text{°}\) (MA là tiếp tuyến của (O)); \(\widehat{MBO}=90\text{°}\) (MB là tiếp tuyến của (O))
→ \(\widehat{MAO}+\widehat{MBO}=180\text{°}\)
mà \(\widehat{MAO}\) và \(\widehat{MBO}\) là hai góc đối nhau
→ Tứ giác MAOB nội tiếp (dhnb) (đpcm)

b) Chứng minh MA.AB = 2MH.AO
Ta có: OA = OB (A, B ∈ (O))
→ O thuộc đường trung trực của AB (1)
Lại có: MA = MB (Tính chất hai tiếp tuyến cắt nhau)
→ M thuộc đường trung trực của AB (2)
Từ (1) và (2) → OM là đường trung trực của AB
→ OM ⊥ AB tại H và H là trung điểm của AB
→ \(\widehat{MHA}=90\text{°}\) và AB = 2AH
Xét ∆MAO và ∆MHA có: \(\widehat{MAO}=\widehat{MHA}=90\text{°}\)\(\widehat{M}\) chung
→ ∆MAO ∼ ∆MHA (g.g) → \(\dfrac{MA}{MH}=\dfrac{AO}{HA}\) (cặp cạnh tương ứng)
→ MA.HA = MH.AO
→ 2MA.HA = 2MH.AO
Mà AB = 2AH (cmt) → MA.AB = 2MH.AO (đpcm)

21 tháng 4 2021

 MA.HA = MH.AO
→ 2MA.HA = 2MH.AO
Mà AB = 2AH (cmt) → MA.AB = 2MH.AO (đpcm) 
chỗ đây ko hiểu ;;;-;;;

12 tháng 8 2018

1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn

Vẽ được các yếu tố để chứng minh phần (1).

Ta có M B O ^ = 90 0 ,   M A O ^ = 90 0  (theo t/c của tiếp tuyến và bán kính)

Suy ra:  M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.

2) Chứng minh: MN2 = NF. NA và MN = NH

Ta có A E / / M O ⇒ A E M ^ = E M N ^   mà   A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^

Δ N M F   v à   Δ N A M có:  M N A ^ chung;  E M N ^ = M A F ^

nên  Δ N M F đồng dạng với  Δ N A M

⇒ N M N F = N A N M ⇒ N M 2 = N F . N A        1

Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N   ^ h a y   H B F ^ = F M H ^  

=> MFHB là tứ giác nội tiếp

⇒ F H M ^ = F B M ^ = F A B ^   h a y   F H N ^ = N A H ^

Xét Δ N H F   &   Δ N A H   c ó   A N H   ^ c h u n g ;   N H F ^ = N A H ^

=> Δ N M F đồng dạng  Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A        2  

Từ (1) và (2) ta có NH = HM

3) Chứng minh:  H B 2 H F 2 − EF M F = 1 .

Xét Δ M AF  và Δ M E A  có: A M E ^  chung, M A F ^ = M E A ^

suy ra  Δ M AF  đồng dạng với  Δ M E A

⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2      (3)

Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 A F H ^ = A H N ^ = 90 0 ⇒ A F E ^   = B F H ^  

Δ A E F  và Δ H B F  có: E F A ^ = B F H ^   ;   F E A ^ = F B A ^

suy ra  Δ A E F   ~   Δ H B F  

⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2                (4)

 

Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1

 

20 tháng 3 2020

Ta có: \(\widehat{OAM}=\widehat{OBM}=90^o\)(Vì AM là đường trung tuyến của (O))

\(\Rightarrow\widehat{OAM}+\widehat{OBM}=180^o\)

=> Tứ giác MAOB nội tiếp

Theo tính chất tiếp tuyến cắt nhau ta có MA=MB; OA=OB 

=> MO là đường trung trực của AB 

=> MO _|_ AB tại H

Mà \(\widehat{BAE}=90^o\)hay AE _|_ AB. Do đó AE // MO

Vì AE // MO và MA là tiếp tuyến của (O) nên \(\widehat{NMF}=\widehat{AEF}=\widehat{NAM}\)

=> Tam giác NMA đồng dạng tam giác NFM (gg)
=> \(\frac{NM}{NF}=\frac{NA}{NM}\)\(\Rightarrow NM^2=AN\cdot NF\left(1\right)\)

Ta có: \(\widehat{MFB}=\widehat{MHB}=90^o\)=> Tứ giác MFHB nội tiếp

\(\Rightarrow\widehat{FHN}=\widehat{FBM}\)mà \(\widehat{FBM}=\widehat{NAH}\)

\(\Rightarrow\widehat{NAH}=\widehat{FHN}\)

\(\Rightarrow\Delta NAH\)đồng dạng \(\Delta NHF\left(g.g\right)\)

\(\Rightarrow\frac{NA}{NH}=\frac{NH}{NF}\Rightarrow NH^2=NA\cdot NF\left(2\right)\)

(1)(2) => NM2=NH2 => MN=NH (đpcm)

1 tháng 7 2021

a) Ta có: \(\angle MAO+\angle MBO=90+90=180\Rightarrow MAOB\) nội tiếp

b) Vì \(MO\parallel AE\) \(\Rightarrow\angle NMF=\angle MEA=\angle MAF\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta NFM\) và \(\Delta NMA:\) Ta có: \(\left\{{}\begin{matrix}\angle NMF=\angle NAM\\\angle MNAchung\end{matrix}\right.\)

\(\Rightarrow\Delta NFM\sim\Delta NMA\left(g-g\right)\Rightarrow\dfrac{NF}{NM}=\dfrac{NM}{NA}\Rightarrow NM^2=NF.NA\)

undefined

1 . Cho đường tròn (O).Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB. 1) Chứng minh tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh đường thẳng AE...
Đọc tiếp

1 . 

Cho đường tròn (O).Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là các tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB. 1) Chứng minh tứ giác MAOB nội tiếp đường tròn. 2) Chứng minh đường thẳng AE song song với đường thẳng MO 3) Chứng minh: MN^2= NF.NA. 4) Chứng minh: MN = NH

2 . Cho tam giác ABC vuông tại A (AB < AC), đưong cao AH. Từ H ve HE và HF lần lượt vuông góc AB và AC (EEAB, F eAC). a/Chứng mình AH=EF b/Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tử giác EHKF là hình bình hành. c/Gọi O là giao điểm của AH và EF , I là giao điểm của HF và EK. d/Chứng minh : OI // AC

3 . rút gọn biểu thức : A = (x2 - 1)(x + 2) - (x - 2)(x2 + 2x + 4)

0
30 tháng 1 2022

Từ một điểm M ở bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB với đường tròn (O)( A, B là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng MA, tia EB cắt đường tròn (O) tại C. Tia MC cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng:

a. Tứ giác MAOB nội tiếp;

b. EA2 = EC.EB;

c. BD // MA.

24 tháng 5 2018

Bạn tự vẽ hình nha

a)Xét tứ giác MAOB có:

\(\widehat{MAO}\)=90'(vì MA là tiếp tuyến của (O))

\(\widehat{MBO}\)=90'(vì MB là tiếp tuyến của (O))

Suy ra \(\widehat{MAO}\)+\(\widehat{MBO}\)=90'+90'=180'

Vậy tứ giác MAOB nội tiếp

b)Xét tam giác ABM có:

MA=MB(tính chất hai tiếp tuyến cắt nhau)

Do đó tam giác MAB là tam giác cân tại M

c)Xét tam giác IBF và IAB có:

\(\widehat{BIA}\)là góc chung

\(\widehat{IBF}\)=\(\widehat{IAB}\)(cùng bằng 1/2 sđ\(\widebat{BF}\))

Do đó tam giác IBF đồng dạng với IAB

Suy ra \(\frac{IB}{IF}=\frac{IA}{IB}\)

<=>\(IB^2=IA.IF\)

23 tháng 5 2018

ai giúp mih với

16 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại trung điểm H của AB

b: Xét (O) có

\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP

\(\widehat{AQP}\) là góc nội tiếp chắn cung AP

Do đó: \(\widehat{MAP}=\widehat{AQP}\)

=>\(\widehat{MAP}=\widehat{MQA}\)

Xét ΔMAP và ΔMQA có

\(\widehat{MAP}=\widehat{MQA}\)

\(\widehat{AMP}\) chung

Do đó: ΔMAP đồng dạng với ΔMQA

=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)

Xét (O) có

ΔQAP nội tiếp

QP là đường kính

Do đó: ΔQAP vuông tại A

Xét ΔHAP vuông tại H và ΔHQA vuông tại H có

\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)

Do đó: ΔHAP đồng dạng với ΔHQA

=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)

=>\(MA\cdot HQ=MQ\cdot HA\)