K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

hình :

B C O O' A M H D

4 tháng 5 2020

a) Đường tròn ( O ) và ( O' ) tiếp xúc ngoài tại A tại A nên A,O,O' thẳng hàng.

Qua A vẽ tiếp tuyến chung cắt BC tại M,ta được MB = MC = MA 

Suy ra BC = 2MA

Ta có : \(MO\perp MO'\) 

áp dụng hệ thức lượng vào \(\Delta MOO'\)vuông tại M,ta có :

MA2 = AO.AO' hay MA2 = R.r 

\(\Rightarrow MA=\sqrt{R.r}\)

\(\Rightarrow BC=2\sqrt{R.r}\)

b) gọi D là giao điểm của OC và AH. 

Ta có OB // O'C // AH ( cùng vuông góc với BC )

Theo định lí Ta-let, ta có :

\(\frac{DH}{OB}=\frac{CD}{CO}=\frac{AO'}{OO'}\)

Suy ra : \(\frac{DH}{R}=\frac{r}{R+r}\Rightarrow DH=\frac{R.r}{R+r}\)

Tương tự : \(DA=\frac{R.r}{R+r}\)

\(\Rightarrow AD=DH\)

CMTT O'B cũng đi qua D

Vậy 3 đường thẳng OC,O'B,AH đồng quy tại D

21 tháng 7 2018

O O' A B C H I K

a) Kẻ O'K vuông góc với OB tại K.

Ta có: \(OO'=AO+AO'=R+r\). Dễ thấy tứ giác BKO'C là hình chữ nhật

\(\Rightarrow O'C=BK\Rightarrow BK=r\)\(\Rightarrow OK=OB-BK=R-r\)

Áp dụng ĐL Pytago cho \(\Delta\)OKO' vuông tại K: \(OO'^2-OK^2=O'K^2\)

\(\Leftrightarrow\left(R+r\right)^2-\left(R-r\right)^2=O'K^2\)

\(\Leftrightarrow O'K^2=\left(R+r-R+r\right)\left(R+r+R-r\right)=2r.2R=4Rr\)

\(\Leftrightarrow O'K=2\sqrt{Rr}.\)Mà O'K=BC => \(BC=2\sqrt{Rr}\)

b) Sửa đề: CMR: O'B; OC và AH đồng qui ...

Gọi giao điểm của OC và AH là I. Áp dụng hệ quả ĐL Thales: 

\(\frac{AI}{O'C}=\frac{OA}{OO'}=\frac{R}{R+r}\)\(\Rightarrow\frac{AI}{r}=\frac{R}{R+r}\Leftrightarrow AI=\frac{Rr}{R+r}\)(1)

\(\frac{HI}{OB}=\frac{CH}{BC}=\frac{O'A}{OO'}\)(Do OB // AH // O'C) \(\Rightarrow\frac{HI}{R}=\frac{r}{R+r}\Leftrightarrow HI=\frac{Rr}{R+r}\)(2)

Từ (1) và (2) => AI=HI => I là trung điểm của AH => OC đi qua trung điểm của AH

Tương tự ta c/m được O'B đi qua trung điểm AH => ĐPCM.

21 tháng 7 2018

Bạn bồi dưỡng Toán phải không?

24 tháng 8 2019

a, HS tự làm

b, HS tự làm

c, Chú ý hình thang vuông OEFO’ và xét đường trung bình của hình thang này

d, Từ I kẻ đường thảng song song với EF cắt OE tại M , cắt O’F tại N

Đặt BH=2R; CH= 2R’

∆IOM vuông tại M có:

I M 2 = I O 2 - O M 2 =  R + r 2 - R - r 2 = 4 R r

Tương tự , ∆ION có  I N 2 = 4 R ' r

Suy ra IM+IN=EF=AH

Vậy  2 R r + 2 R ' r = 2 R R '

=>  r R + R ' = R R '

=> r =  R R ' R + R ' 2

5 tháng 11 2019

ạn noi

5 tháng 11 2019

k bít làm

k có câu c

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

21 tháng 1 2024

mà OA⋅OI=OM2=OB2

nên OB2=OH⋅OC

đoạn này không hiểu ạ , góc B đã vuông đâu